版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省蘇州昆山市、太倉市市級名校中考數(shù)學考前最后一卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.甲、乙兩名同學進行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無法確定2.如圖所示,數(shù)軸上兩點A,B分別表示實數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(
)A.a(chǎn)
B.b
C. D.3.據(jù)媒體報道,我國最新研制的“察打一體”無人機的速度極快,經(jīng)測試最高速度可達204000米/分,這個數(shù)用科學記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1064.1.桌面上放置的幾何體中,主視圖與左視圖可能不同的是()A.圓柱B.正方體C.球D.直立圓錐5.如圖,下列各三角形中的三個數(shù)之間均具有相同的規(guī)律,根據(jù)此規(guī)律,最后一個三角形中y與n之間的關(guān)系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+16.正方形ABCD在直角坐標系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉(zhuǎn)180°后,C點的坐標是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)7.下列命題是真命題的個數(shù)有()①菱形的對角線互相垂直;②平分弦的直徑垂直于弦;③若點(5,﹣5)是反比例函數(shù)y=圖象上的一點,則k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直線y=2x﹣1與直線y=3x﹣2交點的橫坐標.A.1個 B.2個 C.3個 D.4個8.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術(shù)節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.9.下列四個圖案中,不是軸對稱圖案的是()A. B. C. D.10.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是(
)A.
B.C.
D.11.點M(a,2a)在反比例函數(shù)y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±212.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.太極揉推器是一種常見的健身器材.基本結(jié)構(gòu)包括支架和轉(zhuǎn)盤,數(shù)學興趣小組的同學對某太極揉推器的部分數(shù)據(jù)進行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉(zhuǎn)盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉(zhuǎn)盤的最低點F,N距離地面的高度差為_____cm.(結(jié)果保留根號)14.如圖,C為半圓內(nèi)一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉(zhuǎn)至△B′OC′,點C′在OA上,則邊BC掃過區(qū)域(圖中陰影部分)的面積為_________cm1.15.三角形兩邊的長是3和4,第三邊的長是方程x2﹣14x+48=0的根,則該三角形的周長為_____.16.如圖,在△ABC中,D,E分別是AB,AC邊上的點,DE∥BC.若AD=6,BD=2,DE=3,則BC=______.17.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數(shù)y1和過P,A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數(shù)的最大值之和等于__.18.如圖,的半徑為1,正六邊形內(nèi)接于,則圖中陰影部分圖形的面積和為________(結(jié)果保留).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)解不等式組并在數(shù)軸上表示解集.20.(6分)已知:a+b=4(1)求代數(shù)式(a+1)(b+1)﹣ab值;(2)若代數(shù)式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.21.(6分)計算:1222.(8分)先化簡,然后從中選出一個合適的整數(shù)作為的值代入求值.23.(8分)草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.(1)求y與x的函數(shù)關(guān)系式;(2)直接寫出自變量x的取值范圍.24.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側(cè)),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.25.(10分)已知二次函數(shù)y=x2-4x-5,與y軸的交點為P,與x軸交于A、B兩點.(點B在點A的右側(cè))(1)當y=0時,求x的值.(2)點M(6,m)在二次函數(shù)y=x2-4x-5的圖像上,設直線MP與x軸交于點C,求cot∠MCB的值.26.(12分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當AC=BC=2時,AD的長為;②當AC=3,BC=4時,AD的長為;當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.27.(12分)為了支持大學生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其它費用1萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數(shù)關(guān)系如圖所示.求該網(wǎng)店每月利潤w(萬元)與銷售單價x(元)之間的函數(shù)表達式;小王自網(wǎng)店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學成績更穩(wěn)定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.2、D【解析】
∵負數(shù)小于正數(shù),在(0,1)上的實數(shù)的倒數(shù)比實數(shù)本身大.∴<a<b<,故選D.3、C【解析】試題分析:204000米/分,這個數(shù)用科學記數(shù)法表示2.04×105,故選C.考點:科學記數(shù)法—表示較大的數(shù).4、B【解析】試題分析:根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上面看得到的圖形是俯視圖,正方體主視圖與左視圖可能不同,故選B.考點:簡單幾何體的三視圖.5、B【解析】
∵觀察可知:左邊三角形的數(shù)字規(guī)律為:1,2,…,n,右邊三角形的數(shù)字規(guī)律為:2,22,…,2下邊三角形的數(shù)字規(guī)律為:1+2,2+22,…,∴最后一個三角形中y與n之間的關(guān)系式是y=2n+n.故選B.【點睛】考點:規(guī)律型:數(shù)字的變化類.6、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉(zhuǎn)180°后,C點的對應點與C一定關(guān)于A對稱,A是對稱點連線的中點,據(jù)此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉(zhuǎn)180°后C的對應點設是C′,則AC′=AC=2,則OC′=3,故C′的坐標是(3,0).故選B.考點:坐標與圖形變化-旋轉(zhuǎn).7、C【解析】
根據(jù)菱形的性質(zhì)、垂徑定理、反比例函數(shù)和一次函數(shù)進行判斷即可.【詳解】解:①菱形的對角線互相垂直是真命題;②平分弦(非直徑)的直徑垂直于弦,是假命題;③若點(5,-5)是反比例函數(shù)y=圖象上的一點,則k=-25,是真命題;④方程2x-1=3x-2的解,可看作直線y=2x-1與直線y=3x-2交點的橫坐標,是真命題;故選C.【點睛】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設和結(jié)論兩部分組成,題設是已知事項,結(jié)論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.一些命題的正確性是用推理證實的,這樣的真命題叫做定理.8、B【解析】試題解析:列表如下:∴共有20種等可能的結(jié)果,P(一男一女)=.
故選B.9、B【解析】
根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】A、是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項正確;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關(guān)鍵.10、D【解析】分析:根據(jù)過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;A不符合題意;B、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點D,根據(jù)圓周角定理,過AD兩點作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;C不符合題意;D、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側(cè)交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;D符合題意;故選D.點睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關(guān)鍵.11、D【解析】
根據(jù)點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,然后解方程即可求解.【詳解】因為點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,,解得:,故選D.【點睛】本題主要考查反比例函數(shù)圖象的上點的特征,解決本題的關(guān)鍵是要熟練掌握反比例函數(shù)圖象上點的特征.12、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項C正確;極差為:14﹣5=9,故選項D錯誤.故選D二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10【解析】
作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個轉(zhuǎn)盤的最低點F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點睛】本題考查解直角三角形的應用,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.14、【解析】
根據(jù)直角三角形的性質(zhì)求出OC、BC,根據(jù)扇形面積公式計算即可.【詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區(qū)域的面積為:故答案為.【點睛】考核知識點:扇形面積計算.熟記公式是關(guān)鍵.15、13【解析】
利用因式分解法求出解已知方程的解確定出第三邊,即可求出該三角形的周長.【詳解】方程x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,當x=6時,三角形周長為3+4+6=13,當x=8時,3+4<8不能構(gòu)成三角形,舍去,綜上,該三角形的周長為13,故答案為13【點睛】此題考查了解一元二次方程-因式分解法,以及三角形三邊關(guān)系,熟練掌握運算法則是解本題的關(guān)鍵.16、1【解析】
根據(jù)已知DE∥BC得出=進而得出BC的值【詳解】∵DE∥BC,AD=6,BD=2,DE=3,∴△ADE∽△ABC,∴,∴,∴BC=1,故答案為1.【點睛】此題考查了平行線分線段成比例的性質(zhì),解題的關(guān)鍵在于利用三角形的相似求三角形的邊長.17、2【解析】
連接PB、PC,根據(jù)二次函數(shù)的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求解即可.【詳解】解:如圖,連接PB、PC,由二次函數(shù)的性質(zhì),OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數(shù)的最大值之和等于2.故答案為2.【點睛】本題考查了二次函數(shù)的最值問題,等邊三角形的判定與性質(zhì),解直角三角形,作輔助線構(gòu)造出等邊三角形并利用等邊三角形的知識求解是解題的關(guān)鍵.18、.【解析】
連接OA,OB,OC,則根據(jù)正六邊形內(nèi)接于可知陰影部分的面積等于扇形OAB的面積,計算出扇形OAB的面積即可.【詳解】解:如圖所示,連接OA,OB,OC,∵正六邊形內(nèi)接于∴∠AOB=60°,四邊形OABC是菱形,∴AG=GC,OG=BG,∠AGO=∠BGC∴△AGO≌△BGC.∴△AGO的面積=△BGC的面積∵弓形DE的面積=弓形AB的面積∴陰影部分的面積=弓形DE的面積+△ABC的面積=弓形AB的面積+△AGB的面積+△BGC的面積=弓形AB的面積+△AGB的面積+△AGO的面積=扇形OAB的面積==故答案為.【點睛】本題考查了扇形的面積計算公式,利用數(shù)形結(jié)合進行轉(zhuǎn)化是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、﹣<x≤0,不等式組的解集表示在數(shù)軸上見解析.【解析】
先求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解不等式2x+1>0,得:x>﹣,解不等式,得:x≤0,則不等式組的解集為﹣<x≤0,將不等式組的解集表示在數(shù)軸上如下:【點睛】本題考查了解一元一次不等式組,解題的關(guān)鍵是掌握“同大取大;同小取小;大小小大中間找;大大小小找不到”.20、(1)5;(2)1或﹣1.【解析】
(1)將原式展開、合并同類項化簡得a+b+1,再代入計算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,據(jù)此進一步計算可得.【詳解】(1)原式=ab+a+b+1﹣ab=a+b+1,當a+b=4時,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,則a﹣b=1或﹣1.【點睛】本題主要考查代數(shù)式的求值,解題的關(guān)鍵是掌握多項式乘多項式的運算法則及整體思想的運用.21、-1【解析】
先化簡二次根式、計算負整數(shù)指數(shù)冪、分母有理化、去絕對值符號,再合并同類二次根式即可得.【詳解】原式=1﹣4﹣+1﹣=﹣1.【點睛】本題考查了實數(shù)的混合運算,熟練掌握二次根式的性質(zhì)、分母有理化、負整數(shù)指數(shù)冪的意義、絕對值的意義是解答本題的關(guān)鍵.22、-1【解析】
先化簡,再選出一個合適的整數(shù)代入即可,要注意a的取值范圍.【詳解】解:,當時,原式.【點睛】本題考查的是代數(shù)式的求值,熟練掌握代數(shù)式的化簡是解題的關(guān)鍵.23、(1)y=-2x+31,(2)20≤x≤1【解析】試題分析:(1)根據(jù)函數(shù)圖象經(jīng)過點(20,300)和點(30,280),利用待定系數(shù)法即可求出y與x的函數(shù)關(guān)系式;
(2)根據(jù)試銷期間銷售單價不低于成本單價,也不高于每千克1元,結(jié)合草莓的成本價即可得出x的取值范圍.試題解析:(1)設y與x的函數(shù)關(guān)系式為y=kx+b,根據(jù)題意,得:解得:∴y與x的函數(shù)解析式為y=-2x+31,(2)∵試銷期間銷售單價不低于成本單價,也不高于每千克1元,且草莓的成本為每千克20元,
∴自變量x的取值范圍是20≤x≤1.24、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】
(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側(cè),根據(jù)二次函數(shù)圖象的性質(zhì)可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結(jié)合A、B兩點的坐標,利用待定系數(shù)法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界)時h的取值范圍.(3)設P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【點睛】本題主要考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的圖象與性質(zhì)、二次函數(shù)與一元二次方程的聯(lián)系、全等三角形的判定與性質(zhì)等知識點.解(1)的關(guān)鍵是掌握待定系數(shù)法,解(2)的關(guān)鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關(guān)鍵是證明△BNP≌△PMQ.25、(1),;(2)【解析】
(1)當y=0,則x2-4x-5=0,解方程即可得到x的值.(2)由題意易求M,P點坐標,再求出MP的直線方程,可得cot∠MCB.【詳解】(1)把代入函數(shù)解析式得,即,解得:,.(2)把代入得,即得,∵二次函數(shù),與軸的交點為,∴點坐標為.設直線的解析式為,代入,得解得,∴,∴點坐標為,在中,又∵∴.【點睛】本題考查的知識點是拋物線與x軸的交點,二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練的掌握拋物線與x軸的交點,二次函數(shù)的性質(zhì).26、解:(1)①.②或.(2)當點D是AB的中點時,△CEF與△ABC相似.理由見解析.【解析】
(1)①當AC=BC=2時,△ABC為等腰直角三角形;
②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關(guān)系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點為AB的中點;
(2)當點D是AB的中點時,△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個三角形相似.【詳解】(1)若△CEF與△ABC相似.①當AC=BC=2時,△ABC為等腰直角三角形,如答圖1所示,此時D為AB邊中點,AD=AC=.②當AC=3,BC=4時,有兩種情況:(I)若CE:CF=3:4,如答圖2所示,∵CE:C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人藝術(shù)品抵押貸款合同范本5篇
- 2025年度智能家居系統(tǒng)個人代理銷售協(xié)議2篇
- 2025年度智能城市基礎(chǔ)設施建設合作協(xié)議2篇
- 2025年度醫(yī)院感染控制中心建設與承包合同4篇
- 2025年個人借款咨詢與信用評分提升服務協(xié)議4篇
- 2025年度個人所得稅贍養(yǎng)老人贍養(yǎng)金代繳及管理協(xié)議4篇
- 二零二五年度車牌租賃與新能源汽車推廣服務協(xié)議4篇
- 二零二五年度彩鋼工程知識產(chǎn)權(quán)保護合同2篇
- 2025年度新能源汽車充電樁建設承包轉(zhuǎn)讓合同范本3篇
- 二零二五年度金融租賃業(yè)務財務風險管理合同2篇
- 血透室護士長述職
- 2024年漢中市行政事業(yè)單位國有資產(chǎn)管理委員會辦公室四級主任科員公務員招錄1人《行政職業(yè)能力測驗》模擬試卷(答案詳解版)
- 藝術(shù)培訓校長述職報告
- 選擇性必修一 期末綜合測試(二)(解析版)2021-2022學年人教版(2019)高二數(shù)學選修一
- 《論語》學而篇-第一課件
- 《寫美食有方法》課件
- 學校制度改進
- 各行業(yè)智能客服占比分析報告
- 年產(chǎn)30萬噸高鈦渣生產(chǎn)線技改擴建項目環(huán)評報告公示
- 心電監(jiān)護考核標準
- (完整word版)申論寫作格子紙模板
評論
0/150
提交評論