2023-2024學年廣東省汕頭市潮師高級中學高考數(shù)學二模試卷含解析_第1頁
2023-2024學年廣東省汕頭市潮師高級中學高考數(shù)學二模試卷含解析_第2頁
2023-2024學年廣東省汕頭市潮師高級中學高考數(shù)學二模試卷含解析_第3頁
2023-2024學年廣東省汕頭市潮師高級中學高考數(shù)學二模試卷含解析_第4頁
2023-2024學年廣東省汕頭市潮師高級中學高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年廣東省汕頭市潮師高級中學高考數(shù)學二模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.2.已知正項等比數(shù)列中,存在兩項,使得,,則的最小值是()A. B. C. D.3.中國古代數(shù)學著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.4.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.5.已知函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.6.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.37.函數(shù)的圖像大致為()A. B.C. D.8.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過檢測將其區(qū)分開來,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件類產(chǎn)品或者檢測出3件類產(chǎn)品時,檢測結(jié)束,則第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為()A. B. C. D.9.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離10.函數(shù)在的圖象大致為()A. B.C. D.11.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.512.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等腰直角三角形內(nèi)有一點P,,,,,則面積為______.14.函數(shù)的圖象在處的切線與直線互相垂直,則_____.15.已知函數(shù)在上僅有2個零點,設(shè),則在區(qū)間上的取值范圍為_______.16.在中,內(nèi)角所對的邊分別是,若,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應(yīng)還4900元,最后一個還款月應(yīng)還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟利益的角度來考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.18.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.19.(12分)已知的內(nèi)角的對邊分別為,且滿足.(1)求角的大?。唬?)若的面積為,求的周長的最小值.20.(12分)已知橢圓的右頂點為,點在軸上,線段與橢圓的交點在第一象限,過點的直線與橢圓相切,且直線交軸于.設(shè)過點且平行于直線的直線交軸于點.(Ⅰ)當為線段的中點時,求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.21.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.22.(10分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)設(shè)點,直線l與曲線C交于不同的兩點A、B,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項可知C為正確選項,故選:C.【點睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.2、C【解析】

由已知求出等比數(shù)列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數(shù)列通項公式基本量的計算及最小值,屬于基礎(chǔ)題.3、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.4、B【解析】

利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點為F,設(shè)點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.5、A【解析】

首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個單位后,所得圖象對應(yīng)的函數(shù),所以,所以.又,所以的最小值為.故選:A【點睛】本題考查三角函數(shù)的圖象變換,誘導公式,意在考查平移變換,屬于基礎(chǔ)題型.6、A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎(chǔ).7、A【解析】

根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】

根據(jù)分步計數(shù)原理,由古典概型概率公式可得第一次檢測出類產(chǎn)品的概率,不放回情況下第二次檢測出類產(chǎn)品的概率,即可得解.【詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測出類產(chǎn)品的概率為;故第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為;故選:D.【點睛】本題考查了分步乘法計數(shù)原理的應(yīng)用,古典概型概率計算公式的應(yīng)用,屬于基礎(chǔ)題.9、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r10、C【解析】

先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項;當時,,所以排除A選項;當時,,排除D選項;綜上可知,C為正確選項,故選:C.【點睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.11、D【解析】

利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學生概念理解,數(shù)據(jù)處理,數(shù)學運算的能力,屬于基礎(chǔ)題.12、A【解析】

由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用余弦定理計算,然后根據(jù)平方關(guān)系以及三角形面積公式,可得結(jié)果.【詳解】設(shè)由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點睛】本題主要考查余弦定理解三角形,仔細觀察,細心計算,屬基礎(chǔ)題.14、1.【解析】

求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:【點睛】本題主要考查直線垂直的應(yīng)用以及導數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.15、【解析】

先根據(jù)零點個數(shù)求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數(shù)圖象與性質(zhì)的綜合,其中涉及到換元法求解三角函數(shù)值域的問題,難度較難.對形如的函數(shù)的值域求解,關(guān)鍵是采用換元法令,然后根據(jù),將問題轉(zhuǎn)化為關(guān)于的函數(shù)的值域,同時要注意新元的范圍.16、【解析】

先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)289200元;(2)能夠獲批;(3)應(yīng)選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個等差數(shù)列,即可由等差數(shù)列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設(shè)小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個等差數(shù)列,記為,表示數(shù)列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設(shè)小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經(jīng)濟利益的角度來考慮,小張應(yīng)選擇等額本金還款方式.【點睛】本題考查了等差數(shù)列與等比數(shù)列求和公式的綜合應(yīng)用,數(shù)列在實際問題中的應(yīng)用,理解題意是解決問題的關(guān)鍵,屬于中檔題.18、(1);(2)【解析】

(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設(shè)直線的方程為,易知,可得點的坐標為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結(jié)合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點的坐標為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學生的計算求解能力,屬于難題.19、(1)(2)【解析】

(1)因為,所以,由余弦定理得,化簡得,可得,解得,又因為,所以.(6分)(2)因為,所以,則(當且僅當時,取等號).由(1)得(當且僅當時,取等號),解得.所以(當且僅當時,取等號),所以的周長的最小值為.20、(Ⅰ)直線的方程為(Ⅱ)【解析】

(1)設(shè)點,利用中點坐標公式表示點B,并代入橢圓方程解得,從而求出直線的方程;(2)設(shè)直線的方程為:,表示點,然后聯(lián)立方程,利用相切得出,然后求出切點,再設(shè)出設(shè)直線的方程,求出點,利用兩點坐標,求出直線的方程,從而求出,最后利用以上已求點的坐標表示面積,根據(jù)基本不等式求最值即可.【詳解】解:(Ⅰ)由橢圓,可得:由題意:設(shè)點,當為的中點時,可得:代入橢圓方程,可得:所以:所以.故直線的方程為.(Ⅱ)由題意,直線的斜率存在且不為0,故設(shè)直線的方程為:令,得:,所以:.聯(lián)立:,消,整理得:.因為直線與橢圓相切,所以.即.設(shè),則,,所以.又直線直線,所以設(shè)直線的方程為:.令,得,所以:.因為,所以直線的方程為:.令,得,所以:.所以.又因為..所以(當且僅當,即時等號成立)所以.【點睛】本小題主要考查直線和橢圓的位置關(guān)系,考查直線方程以及求橢圓中的最值問題,最值問題一般是把目標式求出,結(jié)合目標式特點選用合適的方法求解,側(cè)重考查數(shù)學運算的核心素

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論