2024屆包頭市重點中學(xué)八年級數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2024屆包頭市重點中學(xué)八年級數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2024屆包頭市重點中學(xué)八年級數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2024屆包頭市重點中學(xué)八年級數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2024屆包頭市重點中學(xué)八年級數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆包頭市重點中學(xué)八年級數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.若x≤0,則化簡|1﹣x|﹣的結(jié)果是()A.1﹣2x B.2x﹣1 C.﹣1 D.12.如圖,一次函數(shù)圖象經(jīng)過點A,且與正比例函數(shù)y=-x的圖象交于點B,則該一次函數(shù)的表達式為()A.y=-x+2 B.y=x+2 C.y=x-2 D.y=-x-23.如圖,過正方形的頂點作直線,點、到直線的距離分別為和,則的長為()A. B. C. D.4.下列圖形既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.甲、乙、丙、丁四名跳遠運動員選拔賽成績的平均數(shù)與方差s2如下表所示:甲乙丙丁平均數(shù)(cm)561560561560方差s23.53.515.516.5根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運動員參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁6.為考察甲、乙、丙三種小麥的長勢,在同一時期分別從中隨機抽取部分麥苗,計算后得到苗高(單位:cm)的方差為S甲2=4.1,SA.甲 B.乙 C.丙 D.都一樣7.下列各數(shù)中比3大比4小的無理數(shù)是()A. B. C.3.1 D.8.在平行四邊形ABCD中,若∠A=50A.∠B=130° B.∠B+∠C=180°9.若點P(a,2)在第二象限,則a的值可以是()A. B.0 C.1 D.210.如圖,在?ABCD中,連接AC,∠ABC=∠CAD=45°,AB=,則BC的長是()A. B.2 C.2 D.411.下列運算正確的是()A. B. C. D.2mm=2m12.下列圖形中既是軸對稱圖形又是中心對稱圖形的是()A.等腰三角形 B.平行四邊形 C.正五邊形 D.正十邊形二、填空題(每題4分,共24分)13.如圖,,分別平分與,,,則與之間的距離是__________.14.某企業(yè)兩年前創(chuàng)辦時的資金為1000萬元,現(xiàn)在已有資金1210萬元,設(shè)該企業(yè)兩年內(nèi)資金的年平均增長率是x,則根據(jù)題意可列出方程:______.15.若從一個多邊形的一個頂點出發(fā)可引5條對角線,則它是______邊形.16.當(dāng)五個整數(shù)從小到大排列后,其中位數(shù)是4,如果這組數(shù)據(jù)的唯一眾數(shù)是6,那么這組數(shù)據(jù)可能的最大的和是_____________.17.一元二次方程的兩根為,,若,則______.18.確定一個的值為________,使一元二次方程無實數(shù)根.三、解答題(共78分)19.(8分)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.(1)求證:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的長.20.(8分)實踐與探究寬與長的比是(約0.618)的矩形叫做黃金矩形。黃金矩形給我們以協(xié)調(diào)、均勻的美感。世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計。下面我們通過折紙得到黃金矩形。第一步,在一張矩形紙片的一端,利用圖1的方法折出一個正方形,然后把紙片展平。第二步,如圖2,把這個正方形折成兩個相等的矩形,再把紙片展平,折痕是。第三步,折出內(nèi)側(cè)矩形的對角線,并把折到圖3中所示的處,折痕為。第四步,展平紙片,按照所得的點折出,使;過點折出折痕,使。(1)上述第三步將折到處后,得到一個四邊形,請判斷四邊形的形狀,并說明理由。(2)上述第四步折出折痕后得到一個四邊形,這個四邊形是黃金矩形,請你說明理由。(提示:設(shè)的長度為2)(3)在圖4中,再找出一個黃金矩形_______________________________(黃金矩形除外,直接寫出答案,不需證明,可能參考數(shù)值:)(4)請你舉一個采用了黃金矩形設(shè)計的世界名建筑_________________________.21.(8分)如圖,AD=CB,AB=CD,求證:△ACB≌△CAD22.(10分)如圖,在平面直角坐標(biāo)系中,是原點,的頂點、的坐標(biāo)分別為、,反比例函數(shù)的圖像經(jīng)過點.(1)求點的坐標(biāo);(2)求的值.(3)將沿軸翻折,點落在點處.判斷點是否落在反比例函數(shù)的圖像上,請通過計算說明理由.23.(10分)解方程:x(x﹣3)=1.24.(10分)學(xué)校準(zhǔn)備購買紀念筆和記事本獎勵同學(xué),紀念筆的單價比記事本的單價多4元,且用30元買記事本的數(shù)量與用50元買紀念筆的數(shù)量相同.求紀念筆和記事本的單價.25.(12分)(1)解方程:x2x-3+53-2x(2)解不等式組并把解集表示在數(shù)軸上:3x-1226.某小區(qū)積極創(chuàng)建環(huán)保示范社區(qū),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,已知溫馨提示牌的單價為每個30元,垃圾箱的單價為每個90元,共需購買溫馨提示牌和垃圾箱共100個.(1)若規(guī)定溫馨提示牌和垃圾箱的個數(shù)之比為1:4,求所需的購買費用;(2)若該小區(qū)至多安放48個溫馨提示牌,且費用不超過6300元,請列舉所有購買方案,并說明理由.

參考答案一、選擇題(每題4分,共48分)1、D【解析】試題分析:根據(jù)x≤0,可知-x≥0,因此可知1-x≥0,然后根據(jù)可求解為|1﹣x|﹣=1-x+x=1.故選:D2、B【解析】

解:設(shè)一次函數(shù)的解析式y(tǒng)=kx+b(k≠0),∵一次函數(shù)圖象經(jīng)過點A,且與正比例函數(shù)y=-x的圖象交于點B,∴在直線y=-x中,令x=-1,解得:y=1,則B的坐標(biāo)是(-1,1).把A(0,1),B(-1,1)的坐標(biāo)代入一次函數(shù)的解析式y(tǒng)=kx+b得:,解得,該一次函數(shù)的表達式為y=x+1.故選B.3、A【解析】

先證明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC長.【詳解】解:∵四邊形ABCD是正方形,

∴AB=AC,∠ABC=90°.

∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,

∴∠EAB=∠CBF.

又∠AEB=∠CFB=90°,

∴△ABE≌BCF(AAS).

∴BE=CF=1.

在Rt△ABE中,利用勾股定理可得AB===2.

則AC=AB=2.

故選A.【點睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì),以及勾股定理,解題的關(guān)鍵是通過全等轉(zhuǎn)化線段使其劃歸于一直角三角形中,再利用勾股定理進行求解.4、D【解析】

直接利用軸對稱圖形和中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,但不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

D、既是中心對稱圖形也是軸對稱圖形,故此選項正確.

故選:D.【點睛】此題主要考查了中心對稱與軸對稱的概念:軸對稱的關(guān)鍵是尋找對稱軸,兩邊圖象折疊后可重合,中心對稱是要尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.5、A【解析】試題分析:根據(jù)方差和平均數(shù)的意義找出平均數(shù)大且方差小的運動員即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴發(fā)揮穩(wěn)定的運動員應(yīng)從甲和乙中選拔,∵甲的平均數(shù)是561,乙的平均數(shù)是560,∴成績好的應(yīng)是甲,∴從中選擇一名成績好又發(fā)揮穩(wěn)定的運動員參加比賽,應(yīng)該選擇甲;故選A.【點評】本題考查了方差和平均數(shù).方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.6、B【解析】

根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定.由此即可解答.【詳解】∵S甲2=4.1,S∴S丙2>S甲2>S乙2,方差最小的為乙,∴麥苗高度最整齊的是乙.故選B.【點睛】本題考查了方差的應(yīng)用,方差是用來衡量一批數(shù)據(jù)的波動大小(即這批數(shù)據(jù)偏離平均數(shù)的大?。┑慕y(tǒng)計量.在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定.7、A【解析】

由于帶根號的要開不盡方是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù),根據(jù)無理數(shù)的定義即可求解.【詳解】∵四個選項中是無理數(shù)的只有和,而>4,3<<4,∴選項中比3大比4小的無理數(shù)只有.故選:A.【點睛】此題主要考查了無理數(shù)的定義,解題時注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).8、D【解析】

由于平行四邊形中相鄰內(nèi)角互補,對角相等,而∠A和∠C是對角可以求出∠C,∠D和∠B與∠A是鄰角故可求出∠D和∠B,由此可以分別求出它們的度數(shù),然后可以判斷了.【詳解】∵四邊形ABCD是平行四邊形,∴∠A=∠C,∠B=∠D,∠A+∠B=180°而∠A=50°,∴∠C=∠A=50°,∠B=∠D=130°,∴D選項錯誤,故選D.【點睛】本題考查平行四邊形的性質(zhì),平行四邊形的對角相等,鄰角互補;熟練運用這個性質(zhì)求出其它三個角是解決本題的關(guān)鍵.9、A【解析】

根據(jù)第二象限內(nèi)點的橫坐標(biāo)是負數(shù)判斷.【詳解】解:∵點P(a,1)在第二象限,∴a<0,∴-1、0、1、1四個數(shù)中,a的值可以是-1.故選:A.【點睛】本題考查了各象限內(nèi)點的坐標(biāo)的符號特征,記住各象限內(nèi)點的坐標(biāo)的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】

根據(jù)平行四邊形的性質(zhì)可得出CD=AB=、∠D=∠CAD=45°,由等角對等邊可得出AC=CD=,再利用勾股定理即可求出BC的長度.【詳解】∵四邊形ABCD是平行四邊形,∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==1.故選:B.【點睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)以及勾股定理,根據(jù)平行四邊形的性質(zhì)結(jié)合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解題的關(guān)鍵.11、C【解析】A.,錯誤;B.,錯誤;C.,正確;D.,錯誤.故選C.12、D【解析】

根據(jù)軸對稱圖形和中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形.故錯誤;

B、不是軸對稱圖形,是中心對稱圖形.故錯誤;

C、是軸對稱圖形,不是中心對稱圖形.故錯誤;

D、是軸對稱圖形,也是中心對稱圖形.故正確.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(每題4分,共24分)13、1【解析】

過點G作GF⊥BC于F,交AD于E,根據(jù)角平分線的性質(zhì)得到GF=GH=5,GE=GH=5,計算即可.【詳解】解:過點G作GF⊥BC于F,交AD于E,

∵AD∥BC,GF⊥BC,

∴GE⊥AD,

∵AG是∠BAD的平分線,GE⊥AD,GH⊥AB,

∴GE=GH=4,

∵BG是∠ABC的平分線,F(xiàn)G⊥BC,GH⊥AB,

∴GF=GE=4,

∴EF=GF+GE=1,

故答案為:1.【點睛】本題考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關(guān)鍵.14、.【解析】

根據(jù)關(guān)系式:現(xiàn)在已有資金1000萬元×(1+年平均增長率)2=現(xiàn)在已有資金1萬元,把相關(guān)數(shù)值代入即可求解.【詳解】設(shè)該企業(yè)兩年內(nèi)資金的年平均增長率是x,則根據(jù)題意可列出方程:1000(1+x)2=1.故答案為:1000(1+x)2=1.【點睛】此題主要考查了由實際問題抽象出一元二次方程,關(guān)鍵是掌握增長率問題的計算公式:變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.15、八..【解析】

可根據(jù)n邊形從一個頂點引出的對角線與邊的關(guān)系:n-3,列方程求解.【詳解】設(shè)多邊形有n條邊,則n-3=5,解得n=1.故多邊形的邊數(shù)為1,即它是八邊形.故答案為:八.【點睛】多邊形有n條邊,則經(jīng)過多邊形的一個頂點的所有對角線有(n-3)條,經(jīng)過多邊形的一個頂點的所有對角線把多邊形分成(n-2)個三角形.16、21.【解析】已知這組數(shù)據(jù)共5個,且中位數(shù)為4,所以第三個數(shù)是4;又因這組數(shù)據(jù)的唯一眾數(shù)是6,可得6應(yīng)該是4后面的兩個數(shù)字,而前兩個數(shù)字都小于4,且都不相等,所以前兩個數(shù)字最大的時候是3,2,即可得其和為21,所以這組數(shù)據(jù)可能的最大的和為21.故答案為:21.點睛:主要考查了根據(jù)一組數(shù)據(jù)的中位數(shù)來確定數(shù)據(jù)的能力.將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).注意:找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).17、-7【解析】

先用根與系數(shù)的關(guān)系,確定m、n的和與積,進一步確定a的值,然后將m代入,得到,最后再對變形即會完成解答.【詳解】解:由得:m+n=-5,mn=a,即a=2又m是方程的根,則有,所以+(m+n)=-2-5=-7故答案為-7.【點睛】本題主要考查了一元二次方程的解和多項式的變形,其中根據(jù)需要對多項式進行變形是解答本題的關(guān)鍵.18、【解析】

根據(jù)方程無實數(shù)根求出b的取值范圍,再確定b的值即可.【詳解】∵一元二次方程x2+2bx+1=0無實數(shù)根,∴4b2-4<0∴-1<b<1,因此,b可以取等滿足條件的值.【點睛】此題考查了一元二次方程根的判別式的應(yīng)用.此題難度不大,解題的關(guān)鍵是掌握當(dāng)△<0時,一元二次方程沒有實數(shù)根.三、解答題(共78分)19、(1)證明見解析(2)13【解析】

(1)先根據(jù)同角的余角相等得到∠ACE=∠BCD,再結(jié)合等腰直角三角形的性質(zhì)即可證得結(jié)論;(2)根據(jù)全等三角形的性質(zhì)可得AE=BD,∠EAC=∠B=45°,即可證得△AED是直角三角形,再利用勾股定理即可求出DE的長.【詳解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形∴DE=【點睛】解答本題的關(guān)鍵是熟練掌握全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等、對應(yīng)角相等.20、(1)四邊形是菱形,見解析;(2)見解析;(3)黃金矩形(或黃金矩形);(4)希臘的巴特農(nóng)神廟(或巴黎圣母院).【解析】

(1)根據(jù)菱形的判定即可求解;(2)根據(jù)菱形的性質(zhì)及折疊得到,即可證明;(3)【詳解】(1)解:四邊形是菱形,理由如下:由矩形紙片可得,∴,由折疊可得,∴,∴,又由折疊可得,∴,∴四邊形是菱形;(2)證明:設(shè)的長度為2,由正方形可得,,∴,∵,∴,∴,∴四邊形是矩形,∵,由折疊可得,,在中,根據(jù)勾股定理,,由折疊可得,∴,∴,∴矩形是黃金矩形;(3)黃金矩形理由:AG=AD+DG=AB+DG=AH=2,∴∴四邊形AGEH為黃金矩形(4)希臘的巴特農(nóng)神廟(或巴黎圣母院)【點睛】此題主要考查矩形的性質(zhì)與判定,解題的關(guān)鍵是熟知特殊平行四邊形的判定與性質(zhì).21、見解析【解析】

利用SSS即可證明.【詳解】證明:在△ACB與△CAD中∴△ACB≌△CAD(SSS)【點睛】本題考查的是全等三角形的判定,能夠根據(jù)SSS證明三角形全等是解題的關(guān)鍵.22、(1);(2);(3)點不落在反比例函數(shù)圖像上.【解析】

(1)根據(jù)平行四邊形的性質(zhì),可得的坐標(biāo);(2)已知的坐標(biāo),可得的值;(3)根據(jù)圖形全等和對稱,可得坐標(biāo),代入反比例函數(shù),可判斷是否在圖像上.【詳解】解:(1)∵平行四邊形,∴,∵的坐標(biāo)為,∴,∵的坐標(biāo)為,∴點的坐標(biāo)為;(2)把的坐標(biāo)代入函數(shù)解析式得:,∴.(3)點不落在反比例函數(shù)圖像上;理由:根據(jù)題意得:的坐標(biāo)為,當(dāng)時,,∴點不落在反比例函數(shù)圖像上.【點睛】本題綜合考查平行四邊形性質(zhì)、反比例函數(shù)、圖形翻折、全等等知識.23、x2=2,x2=﹣2【解析】

把方程化成一般形式,用十字相乘法因式分解求出方程的根.【詳解】解:x2﹣3x﹣2=0(x﹣2)(x+2)=0x﹣2=0或x+2=0∴x2=2,x2=﹣2.【點睛】本題考查了一元二次方程的解法,根據(jù)題目特點,可以靈活選擇合適的方法進行解答,使計算變得簡單.24、紀念筆和記事本的單價分別為1元,6元.【解析】

首先設(shè)紀念筆單價為x元,則記事本單價為(x-4)元,根據(jù)題意可得等量關(guān)系:30元買記事本的數(shù)量與用50元買

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論