吉林省德惠市大區(qū)2024年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
吉林省德惠市大區(qū)2024年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
吉林省德惠市大區(qū)2024年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
吉林省德惠市大區(qū)2024年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
吉林省德惠市大區(qū)2024年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省德惠市大區(qū)2024年八年級數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列四組線段中,不能組成直角三角形的是()A.,, B.,,C.,, D.,,2.在一次數(shù)學(xué)課上,張老師出示了一個題目:“如圖,?ABCD的對角線相交于點O,過點O作EF垂直于BD交AB,CD分別于點F,E,連接DF,BE,請根據(jù)上述條件,寫出一個正確結(jié)論.”其中四位同學(xué)寫出的結(jié)論如下:小青:OE=OF;小何:四邊形DFBE是正方形;小夏:S四邊形AFED=S四邊形FBCE;小雨:∠ACE=∠CAF,這四位同學(xué)寫出的結(jié)論中不正確的是()A.小青 B.小何 C.小夏 D.小雨3.若分式(x≠0,y≠0)中x,y同時擴大3倍,則分式的值()A.?dāng)U大3倍 B.縮小3倍 C.改變 D.不改變4.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A. B.4 C.4或 D.以上都不對5.如圖,在△ABC中,∠A=∠B=45,AB=4.以AC為邊的陰影部分圖形是一個正方形,則這個正方形的面積為()A.2 B.4 C.8 D.166.某商廈信譽樓女鞋專柜試銷一種新款女鞋,一個月內(nèi)銷售情況如表所示型號2222.52323.52424.525數(shù)量(雙)261115734經(jīng)理最關(guān)心的是,哪種型號的鞋銷量最大.對他來說,下列統(tǒng)計量中最重要的是()A.平均數(shù) B.方差 C.中位數(shù) D.眾數(shù)7.一元二次方程的根是()A. B. C., D.,8.如圖,將菱形豎直位置的對角線向右平移acm,水平位置的對角線向上平移bcm,平移后菱形被分成四塊,最大一塊與最小一塊的面積和記為,其余兩塊的面積和為,則與的差是()A.a(chǎn)bcm2 B.2abcm2 C.3abcm2 D.4abcm29.如圖,直線與相交于點P,點P的橫坐標(biāo)為-1,則關(guān)于x的不等式的解集在數(shù)軸上表示為()A. B.C. D.10.分別順次連接①平行四邊形②矩形③菱形④對角線相等的四邊形,各邊中點所構(gòu)成的四邊形中,為菱形的是()A.②④ B.①②③ C.② D.①④11.如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F,若小敏行走的路程為3100m,則小聰行走的路程為()m.A.3100 B.4600 C.3000 D.360012.一次跳遠(yuǎn)比賽中,成績在4.05米以上的有8人,頻率為0.4,則參加比賽的共有()A.40人 B.30人 C.20人 D.10人二、填空題(每題4分,共24分)13.如圖,在中,,,,P為BC上一動點,于E,于F,M為EF的中點,則AM的最小為___.14.如圖,點A的坐標(biāo)為,點B在直線上運動則線段AB的長度的最小值是___.15.如圖,線段AB兩個點的坐標(biāo)分別為A2.5,5,B5,0,以原點為位似中心,將線段AB縮小得到線段CD,若點D的坐標(biāo)為2,0,則點C的坐標(biāo)為16.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AEF,延長EF交邊BC于點G,連接AG,CF,則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正確的結(jié)論有__________.17.命題“兩直線平行,同位角相等”的逆命題是.18.不等式組的解集為_________.三、解答題(共78分)19.(8分)如圖,矩形的對角線交于點,點是矩形外的一點,其中.(1)求證:四邊形是菱形;(2)若,連接交于于點,連接,求證:平分.20.(8分)(問題原型)在圖①的矩形中,點、、、分別在、、、上,若,則稱四邊形為矩形的反射四邊形;(操作與探索)在圖②,圖③的矩形中,,,點、分別在、邊的格點上,試?yán)谜叫尉W(wǎng)格分別在圖②、圖③上作矩形的反射四邊形;(發(fā)現(xiàn)與應(yīng)用)由前面的操作可以發(fā)現(xiàn),一個矩形有不同的反射四邊形,且這些反射四邊形的周長都相等.若在圖①的矩形中,,,則其反射四邊形的周長為______.21.(8分)已知x=2﹣,求代數(shù)式(7+4)x2+(2+)x+的值.22.(10分)因式分解:(1)2x3﹣8x;(2)(x+y)2﹣14(x+y)+4923.(10分)在數(shù)學(xué)興趣小組活動中,小明進(jìn)行數(shù)學(xué)探究活動.將大小不相同的正方形ABCD與正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.(1)小明發(fā)現(xiàn)DG=BE且DG⊥BE,請你給出證明;(2)如圖2,小明將正方形ABCD繞點A轉(zhuǎn)動,當(dāng)點B恰好落在線段DG上時①猜想線段DG和BE的位置關(guān)系是.②若AD=2,AE=,求△ADG的面積.24.(10分)如圖,分別延長平行四邊形ABCD的邊AB、CD至點E、點F,連接CE、AF,其中∠E=∠F.求證:四邊形AECF為平行四邊形25.(12分)如圖,在△ABC中,CE平分∠ACB交AB于E點,DE∥BC,DF∥AB.(1)若∠BCE=25°,請求出∠ADE的度數(shù);(2)已知:BF=2BE,DF交CE于P點,連結(jié)BP,AB⊥BP.①猜想:△CDF的邊DF與CD的數(shù)量關(guān)系,并說明理由;②取DE的中點N,連結(jié)NP.求證:∠ENP=3∠DPN.26.解方程:(1);(2)

參考答案一、選擇題(每題4分,共48分)1、A【解析】

由勾股定理的逆定理,只要驗證兩小邊的平方和是否等于最長邊的平方即可.【詳解】解:A、22+32≠42,故不能組成直角三角形,符合題意;

B、12+2=22,故能組成直角三角形,不符合題意;

C、12+22=()2,故能組成直角三角形,不符合題意;

D、52+122=132,故能組成直角三角形,不符合題意.

故選:A.【點睛】本題考查勾股定理的逆定理.判斷三角形是否為直角三角形,已知三角形三邊的長,只要驗證兩小邊的平方和是否等于最長邊的平方即可判斷.2、B【解析】

根據(jù)平行四邊形的性質(zhì)可得OA=OC,CD∥AB,從而得∠ACE=∠CAF,可判斷出小雨的結(jié)論正確,證明△EOC≌△FOA,可得OE=OF,判斷出小青的結(jié)論正確,由△EOC≌△FOA繼而可得出S四邊形AFED=S四邊形FBCE,判斷出小夏的結(jié)論正確,由△EOC≌△FOA可得EC=AF,繼而可得出四邊形DFBE是平行四邊形,從而可判斷出四邊形DFBE是菱形,無法判斷是正方形,判斷出故小何的結(jié)論錯誤即可.【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,CD∥AB,∴∠ACE=∠CAF,(故小雨的結(jié)論正確),在△EOC和FOA中,,∴△EOC≌△FOA,∴OE=OF(故小青的結(jié)論正確),∴S△EOC=S△AOF,∴S四邊形AFED=S△ADC=S平行四邊形ABCD,∴S四邊形AFED=S四邊形FBCE,(故小夏的結(jié)論正確),∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE∥FB,∴四邊形DFBE是平行四邊形,∵OD=OB,EO⊥DB,∴ED=EB,∴四邊形DFBE是菱形,無法判斷是正方形,(故小何的結(jié)論錯誤),故選B.【點睛】本題考查了平行四邊形的性質(zhì)、菱形的判定、全等三角形的判定與性質(zhì)、正方形的判定等,綜合性較強,熟練掌握各相關(guān)性質(zhì)與定理是解題的關(guān)鍵.3、D【解析】

可將式中的x,y都用3x,3y來表示,再將化簡后的式子與原式對比,即可得出答案.【詳解】將原式中的x,y分別用3x,3y表示.故選D.【點睛】考查的是對分式的性質(zhì)的理解,分式中元素擴大或縮小N倍,只要將原數(shù)乘以或除以N,再代入原式求解,是此類題目的常見解法.4、A【解析】解:∵∠C=90°,AC=5,BC=3,∴AB===.故選A.5、C【解析】試題解析:6、D【解析】

根據(jù)眾數(shù)的定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,即可得解.【詳解】根據(jù)題意,銷量最大,即為眾數(shù),故答案為D.【點睛】此題主要考查對眾數(shù)的理解運用,熟練掌握,即可解題.7、D【解析】

利用因式分解法解方程.【詳解】∵x(x+3)=0,∴x=0,或x+3=0,解得x=0或x=?3.故選D.【點睛】本題主要考查解一元二次方程-因式分解法,熟悉掌握是關(guān)鍵.8、D【解析】

作HK關(guān)于AC的對稱線段GL,作FE關(guān)于BD的對稱線段IJ,由對稱性可知,圖中對應(yīng)顏色的部分面積相等,即可求解.【詳解】解:如圖,作HK關(guān)于AC的對稱線段GL,作FE關(guān)于BD的對稱線段IJ,

由對稱性可知,圖中對應(yīng)顏色的部分面積相等,

∴s1與s2的差=4SOMNP,

∵OM=a,ON=b,

∴4SOMNP=4ab,

故選:D.【點睛】本題考查菱形的性質(zhì),圖形的對稱性;通過作軸對稱圖形,將面積進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵.9、A【解析】

觀察函數(shù)圖象得到當(dāng)x>-1時,函數(shù)y=x+b的圖象都在y=kx-1的圖象上方,所以不等式x+b>kx-1的解集為x>-1,然后根據(jù)用數(shù)軸表示不等式解集的方法對各選項進(jìn)行判斷.【詳解】當(dāng)x>-1時,x+b>kx-1,即不等式x+b>kx-1的解集為x>-1.故選A.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.也考查了在數(shù)軸上表示不等式的解集.10、A【解析】

根據(jù)菱形的判定,有一組鄰邊相等的平行四邊形是菱形,只要保證四邊形的對角線相等即可.【詳解】∵連接任意四邊形的四邊中點都是平行四邊形,∴對角線相等的四邊形有:②④,故選:A.【點睛】本題主要利用菱形的四條邊都相等及連接任意四邊形的四邊中點都是平行四邊形來解決.11、B【解析】

連接CG,由正方形的對稱性,易知AG=CG,由正方形的對角線互相平分一組對角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要計算小聰走的路程,只要得到小聰比小敏多走了多少就行.【詳解】連接GC,∵四邊形ABCD為正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,AD=∴△AGD≌△GDC(SAS)∴AG=CG,在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF-BA-AG-GE,=AD=1500m.∵小敏共走了3100m,∴小聰行走的路程為3100+1500=4600(m),故選B.【點睛】本題考查了正方形的性質(zhì)、全等三角形的性質(zhì)和判定、矩形的性質(zhì)及等腰三角形的性質(zhì).解決本題的關(guān)鍵是證明AG=EF,DE=GE.12、C【解析】

根據(jù)頻率、頻數(shù)的關(guān)系:頻率=頻數(shù)÷數(shù)據(jù)總和,可得數(shù)據(jù)總和=頻數(shù)÷頻率.【詳解】∵成績在4.05米以上的頻數(shù)是8,頻率是0.4,∴參加比賽的運動員=8÷0.4=20.故選C.【點睛】考查頻數(shù)與頻率,掌握數(shù)據(jù)總和=頻數(shù)÷頻率是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、2.1.【解析】

解:在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四邊形AFPE是矩形,∴AM=AP,根據(jù)直線外一點到直線上任一點的距離,垂線段最短,即AP⊥BC時,AP最短,同樣AM也最短,∴當(dāng)AP⊥BC時,△ABP∽△CAB,∴∴∴AP最短時,AP=1.8∴當(dāng)AM最短時,AM==2.1故答案為:2.1.14、【解析】

當(dāng)線段AB最短時,直線AB與直線垂直,根據(jù)勾股定理求得AB的最短長度.【詳解】解:當(dāng)線段AB最短時,直線AB與直線垂直,過點A作直線l,因為直線是一、三象限的角平分線,所以,所以,所以,,即,所以.故答案是:.【點睛】考查了垂線段最短的性質(zhì),一次函數(shù)圖象上點的坐標(biāo)特征,勾股定理的應(yīng)用,熟知垂線段最短是解題的關(guān)鍵.15、1,2【解析】

利用點B和點D的坐標(biāo)之間的關(guān)系得到線段AB縮小2.5倍得到線段CD,然后確定C點坐標(biāo).【詳解】解:∵將線段AB縮小得到線段CD,點B(5,0)的對應(yīng)點D的坐標(biāo)為(2.0),∴線段AB縮小2.5倍得到線段CD,∴點C的坐標(biāo)為(1,2).【點睛】本題考查了位似變換:在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k.16、①②③④⑤【解析】

由正方形和折疊的性質(zhì)得出AF=AB,∠B=∠AFG=90°,由HL即可證明Rt△ABG≌Rt△AFG,得出①正確,設(shè)BG=x,則CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1,由勾股定理求出x=2,得出②正確;由等腰三角形的性質(zhì)和外角關(guān)系得出∠AGB=∠FCG,證出平行線,得出③正確;分別求出△EGC,△AEF的面積,可以判斷④,由,可求出△FGC的面積,故此可對⑤做出判斷.【詳解】解:解:∵四邊形ABCD是正方形,

∴AB=AD=DC=6,∠B=D=90°,

∵CD=2DE,

∴DE=1,

∵△ADE沿AE折疊得到△AFE,

∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,

∴AF=AB,

∵在Rt△ABG和Rt△AFG中,,

∴Rt△ABG≌Rt△AFG(HL).

∴①正確;

∵Rt△ABG≌Rt△AFG,

∴BG=FG,∠AGB=∠AGF.

設(shè)BG=x,則CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1.

在Rt△ECG中,由勾股定理得:CG1+CE1=EG1.

∵CG=6-x,CE=4,EG=x+1,

∴(6-x)1+41=(x+1)1,解得:x=2.

∴BG=GF=CG=2.

∴②正確;

∵CG=GF,

∴∠CFG=∠FCG.

∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,

∴∠CFG+∠FCG=∠AGB+∠AGF.

∵∠AGB=∠AGF,∠CFG=∠FCG,

∴∠AGB=∠FCG.

∴AG∥CF.

∴③正確;

∵S△EGC=×2×4=6,S△AEF=S△ADE=×6×1=6,

∴S△EGC=S△AFE;

∴④正確,

∵△CFG和△CEG中,分別把FG和GE看作底邊,

則這兩個三角形的高相同.

∴,

∵S△GCE=6,

∴S△CFG=×6=2.6,

∴⑤正確;

故答案為①②③④⑤.【點睛】本題考查了正方形性質(zhì),折疊性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,平行線的判定等知識點的運用,依據(jù)翻折的性質(zhì)找出其中對應(yīng)相等的線段和對應(yīng)相等的角是解題的關(guān)鍵.17、同位角相等,兩直線平行【解析】

逆命題是原命題的反命題,故本題中“兩直線平行,同位角相等”的逆命題是同位角相等,兩直線平行【點睛】本題屬于對逆命題的基本知識的考查以及逆命題的反命題的考查和運用18、【解析】

先求出不等式組中每一個不等式的解集,再求出它們的公共部分.【詳解】解:解不等式①得:,

解不等式②得:,

∴不等式組的解集為,

故答案為:.【點睛】本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).三、解答題(共78分)19、(1)見解析;(2)見解析.【解析】

(1)由矩形可知OA=OB,由AE∥BD,BE∥AC,即可得出結(jié)論;(2)利用矩形和菱形的性質(zhì)先證△COF≌△EBF,得到OF=BF,再求得∠AOB=60°,利用有一個角是60°的等腰三角形是等邊三角形,得到△AOB為等邊三角形,最后利用三線合一的性質(zhì)得到AF平分∠BAO.【詳解】證明:(1)∵四邊形是矩形,∴則,即∴又∵,∴四邊形是平行四邊形,∴四邊形是菱形;(2)∵四邊形是菱形,∴,∴,∵四邊形是矩形,∴,∴,在和中∴,∴,∵,∴,∴,∵,∴是等邊三角形,∵,∴平分.【點睛】本題考查了矩形的性質(zhì),菱形的判定與性質(zhì),等邊三角形的判定,三線合一的性質(zhì).20、操作與探索:見解析:發(fā)現(xiàn)與應(yīng)用:10.【解析】

(1)根據(jù)網(wǎng)格作出相等的角即可得到反射四邊形;(2)延長GH交PN的延長線與點A,證明△FPE≌△FPB,根據(jù)全等三角形的性質(zhì)得到AB=2NP,再證明GA=GB,過點G作GK⊥NP于K,根據(jù)等腰三角形的性質(zhì)求出KB=AB=4,再利用勾股定理求出GB的長,即可求出四邊形EFGH的周長.【詳解】(1)作圖如下:(2)延長GH交PN的延長線與點A,過點G作GK⊥NP于K,∵∠1=∠2,∠1=∠5,∴∠2=∠5,又PF=PF,∠FPE=∠FPB,∴△FPE≌△FPB,∴EF=BF,EP=PB,同理AH=EH,NA=EN,∴AB=2NP=8,∵∠B=90°-∠5=90°-∠1,∠A=90°-∠3,∴∠A=∠B,∴GA=GB,則KB=AB=4,∴GB=∴四邊形EFGH的周長為2GB=10.【點睛】此題主要考查矩形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).21、2+【解析】試題分析:先求出x2,然后代入代數(shù)式,根據(jù)乘法公式和二次根式的性質(zhì),進(jìn)行計算即可.試題解析:x2=(2﹣)2=7﹣4,則原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+1+=2+.22、(1)1x(x+1)(x﹣1);(1)(x+y﹣7)1.【解析】

(1)首先提取公因式1x,再利用平方差公式完全平方公式分解因式得出答案;(1)直接利用完全平方公式分解因式得出答案.【詳解】解:(1)原式=1x(x1﹣4)=1x(x+1)(x﹣1);(1)原式=(x+y﹣7)1.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.23、(1)詳見解析;(2)①DG⊥BE;②1.【解析】

(1)利用正方形得到條件,判斷出△ADG≌△ABE,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(2)①同理證明△ADG≌△ABE,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②分別計算DM、MG和AM的長,根據(jù)三角形面積可得結(jié)論.【詳解】證明:(1)如圖1,延長EB交DG于點H,∵四邊形ABCD與四邊形AEFG是正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE在△ADG與△ABE中,,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,DG=BE,∵△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,∵△DEH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,∴DG⊥BE;(2)①DG⊥BE,理由是:如圖2,∵四邊形ABCD和四邊形AEFG都為正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴∠ABE=∠ADG∴∠DBE=∠ABE+∠ABD=∠ABD+∠ADG=90°,∴DG⊥BE;故答案為DG⊥BE;②如圖2,過點A作AM⊥DG交DG于點M,∠AMD=∠AMG=90°,∵BD是正方形ABCD的對角線,∴∠MDA=41°在Rt△AMD中,∵∠MDA=41°,AD=2,∴AM=DM=2,在Rt△AMG中,∵AM2+GM2=AG2∴GM==3,∵DG=DM+GM=2+3=1,∴S△ADG=DG?AM=×1×2=1.【點睛】此題是四邊形的綜合題,考查了旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì),用到的知識點是旋轉(zhuǎn)的性質(zhì)、全等三角形的判定,勾股定理和正方形的性質(zhì),難度適中,關(guān)鍵是根據(jù)題意畫出輔助線,構(gòu)造直角三角形.24、證明見解析.【解析】

由平行四邊形的性質(zhì)可得AB=CD,AD=BC,∠ADC=∠ABC,由“AAS”可證△ADF≌△CBE,可得AF=CE,DF=BE,可得AE=CF,則可得結(jié)論.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AD=BC,∠ADC=∠ABC,∴∠ADF=∠CBE,且∠E=∠F,AD=BC,∴△ADF≌△CBE(AAS),∴AF=CE,DF=BE,∴AB+BE=CD+DF,∴AE=CF,且AF=CE,∴四邊形AECF是平行四邊形.【點睛】本題考查了平行四邊形的判定和性質(zhì),全等三角形判定和性質(zhì),熟練運用平行四邊形的判定和性質(zhì)是本題的關(guān)鍵.25、(1)∠ADE=50°;(2)①CD=2DF;見解析;②見解析.【解析】

(1)利用角平分線得出∠ACB=2∠BCE=50°,再利用兩直線平行,同位角相等即可得出結(jié)論;(2)先判斷出四邊形BEDF是平行四邊形,進(jìn)而得出DE=2DF,再利用角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論