2024屆遼寧省大連市西崗區(qū)中考數(shù)學(xué)考前最后一卷含解析_第1頁
2024屆遼寧省大連市西崗區(qū)中考數(shù)學(xué)考前最后一卷含解析_第2頁
2024屆遼寧省大連市西崗區(qū)中考數(shù)學(xué)考前最后一卷含解析_第3頁
2024屆遼寧省大連市西崗區(qū)中考數(shù)學(xué)考前最后一卷含解析_第4頁
2024屆遼寧省大連市西崗區(qū)中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆遼寧省大連市西崗區(qū)中考數(shù)學(xué)考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°2.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點分別落在直線m、n上,∠1=20°,添加下列哪一個條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°3.甲、乙兩盒中分別放入編號為1、2、3、4的形狀相同的4個小球,從甲盒中任意摸出一球,再從乙盒中任意摸出一球,將兩球編號數(shù)相加得到一個數(shù),則得到數(shù)()的概率最大.A.3 B.4 C.5 D.64.已知二次函數(shù)(為常數(shù)),當(dāng)時,函數(shù)的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或35.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.6.甲、乙、丙、丁四名射擊運動員進行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績?nèi)鐖D所示,丙、丁二人的成績?nèi)绫硭荆蕴幻\動員,從平均數(shù)和方差兩個因素分析,應(yīng)淘汰()丙丁平均數(shù)88方差1.21.8A.甲 B.乙 C.丙 D.丁7.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.8.《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得()A.B.C.D.9.某種超薄氣球表面的厚度約為,這個數(shù)用科學(xué)記數(shù)法表示為()A. B. C. D.10.如圖,矩形ABCD中,AB=10,BC=5,點E,F(xiàn),G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為()A.5 B.10 C.10 D.1511.-5的相反數(shù)是()A.5 B. C. D.12.如圖,直線a∥b,直線分別交a,b于點A,C,∠BAC的平分線交直線b于點D,若∠1=50°,則∠2的度數(shù)是A.50° B.70° C.80° D.110°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是_______.14.某學(xué)校組織學(xué)生到首鋼西十冬奧廣場開展綜合實踐活動,數(shù)學(xué)小組的同學(xué)們在距奧組委辦公樓(原首鋼老廠區(qū)的筒倉)20m的點B處,用高為0.8m的測角儀測得筒倉頂點C的仰角為63°,則筒倉CD的高約為______m.(精確到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)15.分解因式:8x2-8xy+2y2=_________________________.16.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點E,連接BD則陰影部分的面積為____(結(jié)果保留π)17.我國倡導(dǎo)的“一帶一路”建設(shè)將促進我國與世界各國的互利合作,“一帶一路”地區(qū)覆蓋總?cè)丝诩s為4400000000人,將數(shù)據(jù)4400000000用科學(xué)記數(shù)法表示為______.18.如果,那么的結(jié)果是______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BE交AD于點F.求證:DF2=EF?BF.20.(6分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)21.(6分)如圖,已知三角形ABC的邊AB是0的切線,切點為B.AC經(jīng)過圓心0并與圓相交于點D,C,過C作直線CE丄AB,交AB的延長線于點E,(1)求證:CB平分∠ACE;(2)若BE=3,CE=4,求O的半徑.22.(8分)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標(biāo);(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)①當(dāng)四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.23.(8分)在數(shù)學(xué)活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關(guān)系嗎?小林選擇了其中一對變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對它們之間的關(guān)系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設(shè)B,E兩點間的距離為xcm,E,F(xiàn)兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關(guān)數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF為等邊三角形時,BE的長度約為cm.24.(10分)在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,連接PM、PB,設(shè)A、P兩點間的距離為xcm,PM+PB長度為ycm.小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小東的探究過程,請補充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))(2)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象.(3)結(jié)合畫出的函數(shù)圖象,解決問題:PM+PB的長度最小值約為______cm.25.(10分)如圖,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).26.(12分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.(1)求證:BC是⊙O的切線;(2)若⊙O的半徑為6,BC=8,求弦BD的長.27.(12分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.2、D【解析】

根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,即可得出結(jié)論.【詳解】∵直線EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故選D.【點睛】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.3、C【解析】解:甲和乙盒中1個小球任意摸出一球編號為1、2、3、1的概率各為,其中得到的編號相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.4、A【解析】

由解析式可知該函數(shù)在x=h時取得最小值1,x>h時,y隨x的增大而增大;當(dāng)x<h時,y隨x的增大而減??;根據(jù)1≤x≤3時,函數(shù)的最小值為5可分如下兩種情況:①若h<1,可得x=1時,y取得最小值5;②若h>3,可得當(dāng)x=3時,y取得最小值5,分別列出關(guān)于h的方程求解即可.【詳解】解:∵x>h時,y隨x的增大而增大,當(dāng)x<h時,y隨x的增大而減小,∴①若h<1,當(dāng)時,y隨x的增大而增大,∴當(dāng)x=1時,y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當(dāng)時,y隨x的增大而減小,當(dāng)x=3時,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時,當(dāng)x=h時,y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值進行分類討論是解題的關(guān)鍵.5、C【解析】

根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負(fù),偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負(fù),偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當(dāng)時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準(zhǔn)確找出題目的規(guī)律并將特殊規(guī)律轉(zhuǎn)化為一般規(guī)律是解決本題的關(guān)鍵.6、D【解析】

求出甲、乙的平均數(shù)、方差,再結(jié)合方差的意義即可判斷.【詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數(shù)為8,方差為1.2,丁的平均數(shù)為8,方差為1.8,故4個人的平均數(shù)相同,方差丁最大.故應(yīng)該淘汰?。蔬xD.【點睛】本題考查方差、平均數(shù)、折線圖等知識,解題的關(guān)鍵是記住平均數(shù)、方差的公式.7、C【解析】

設(shè)I的邊長為x,根據(jù)“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設(shè)I的邊長為x根據(jù)題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應(yīng)用,能夠根據(jù)題意列出方程是解題的關(guān)鍵.8、D【解析】

根據(jù)題意可得等量關(guān)系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據(jù)等量關(guān)系列出方程組即可.【詳解】設(shè)每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.9、A【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.10、B【解析】作點E關(guān)于BC的對稱點E′,連接E′G交BC于點F,此時四邊形EFGH周長取最小值,過點G作GG′⊥AB于點G′,如圖所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四邊形EFGH=2E′G=10,故選B.【點睛】本題考查了軸對稱-最短路徑問題,矩形的性質(zhì)等,根據(jù)題意正確添加輔助線是解題的關(guān)鍵.11、A【解析】由相反數(shù)的定義:“只有符號不同的兩個數(shù)互為相反數(shù)”可知-5的相反數(shù)是5.故選A.12、C【解析】

根據(jù)平行線的性質(zhì)可得∠BAD=∠1,再根據(jù)AD是∠BAC的平分線,進而可得∠BAC的度數(shù),再根據(jù)補角定義可得答案.【詳解】因為a∥b,所以∠1=∠BAD=50°,因為AD是∠BAC的平分線,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本題正確答案為C.【點睛】本題考查的知識點是平行線的性質(zhì),解題關(guān)鍵是掌握兩直線平行,內(nèi)錯角相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≠﹣1【解析】

分式有意義的條件是分母不等于零.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x+1≠0,解得:x≠-1.

故答案是:x≠-1.【點睛】考查的是分式有意義的條件,掌握分式有意義的條件是解題的關(guān)鍵.14、40.0【解析】

首先過點A作AE∥BD,交CD于點E,易證得四邊形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函數(shù)的定義,而求得CE的長,繼而求得筒倉CD的高.【詳解】過點A作AE∥BD,交CD于點E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四邊形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE?tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒倉CD的高約40.0m,故答案為:40.0【點睛】此題考查解直角三角形的應(yīng)用?仰角的定義,注意能借助仰角構(gòu)造直角三角形并解直角三角形是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用.15、1【解析】

提取公因式1,再對余下的多項式利用完全平方公式繼續(xù)分解.完全平方公式:a1±1ab+b1=(a±b)1.【詳解】8x1-8xy+1y2=1(4x1-4xy+y2)=1(1x-y)1.故答案為:1(1x-y)1【點睛】此題考查的是提取公因式法和公式法分解因式,本題關(guān)鍵在于提取公因式可以利用完全平方公式進行二次因式分解.16、π.【解析】

如圖,連接OE,利用切線的性質(zhì)得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計算的面積即可得到陰影部分的面積.【詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了矩形的性質(zhì)和扇形的面積公式.17、4.4×1【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】4400000000的小數(shù)點向左移動9位得到4.4,所以4400000000用科學(xué)記數(shù)法可表示為:4.4×1,故答案為4.4×1.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.18、1【解析】

令k,則a=2k,b=3k,代入到原式化簡的結(jié)果計算即可.【詳解】令k,則a=2k,b=3k,∴原式=1.故答案為:1.【點睛】本題考查了約分,解題的關(guān)鍵是掌握約分的定義:約去分式的分子與分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、見解析【解析】

證明△FDE∽△FBD即可解決問題.【詳解】解:∵四邊形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共邊,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四邊形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴=,即DF2=EF?BF.【點睛】本題考查了相似三角形的判定與性質(zhì),和正方形的性質(zhì),正確理解正方形的性質(zhì)是關(guān)鍵.20、見解析【解析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【詳解】解:如圖,點E即為所求作的點.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.21、(1)證明見解析;(2).【解析】試題分析:(1)證明:如圖1,連接OB,由AB是⊙0的切線,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根據(jù)等腰三角形的性質(zhì)得到∠1=∠2,通過等量代換得到結(jié)果.(2)如圖2,連接BD通過△DBC∽△CBE,得到比例式,列方程可得結(jié)果.(1)證明:如圖1,連接OB,∵AB是⊙0的切線,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如圖2,連接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直徑,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD?CE,∴CD==,∴OC==,∴⊙O的半徑=.考點:切線的性質(zhì).22、(1)拋物線解析式為,頂點為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對稱軸解析式,可用頂點式二次函數(shù)通式來設(shè)拋物線,然后將A、B兩點坐標(biāo)代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點的橫坐標(biāo),用拋物線的解析式求出E點的縱坐標(biāo),那么E點縱坐標(biāo)的絕對值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關(guān)系式進而可得出S與x的函數(shù)關(guān)系式.(3)①將S=24代入S,x的函數(shù)關(guān)系式中求出x的值,即可得出E點的坐標(biāo)和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應(yīng)該是等腰直角三角形,即E點的坐標(biāo)為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點.【詳解】(1)由拋物線的對稱軸是,可設(shè)解析式為.把A、B兩點坐標(biāo)代入上式,得解之,得故拋物線解析式為,頂點為(2)∵點在拋物線上,位于第四象限,且坐標(biāo)適合,∴y<0,即-y>0,-y表示點E到OA的距離.∵OA是的對角線,∴.因為拋物線與軸的兩個交點是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當(dāng)S=24時,即.化簡,得解之,得故所求的點E有兩個,分別為E1(3,-4),E2(4,-4).點E1(3,-4)滿足OE=AE,所以是菱形;點E2(4,-4)不滿足OE=AE,所以不是菱形.②當(dāng)OA⊥EF,且OA=EF時,是正方形,此時點E的坐標(biāo)只能是(3,-3).而坐標(biāo)為(3,-3)的點不在拋物線上,故不存在這樣的點E,使為正方形.23、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】

根據(jù)題意作圖測量即可.【詳解】(1)取點、畫圖、測量,得到數(shù)據(jù)為3.5故答案為:3.5(3)由數(shù)據(jù)得(4)當(dāng)△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x所以,當(dāng)(1)中圖象與直線y=x相交時,交點橫坐標(biāo)即為BE的長,由作圖、測量可知x約為3.1.【點睛】本題為動點問題的函數(shù)圖象探究題,解得關(guān)鍵是按照題意畫圖測量,并將條件轉(zhuǎn)化成函數(shù)圖象研究.24、(1)2.1;(2)見解析;(3)x=2時,函數(shù)有最小值y=4.2【解析】

(1)通過作輔助線,應(yīng)用三角函數(shù)可求得HM+HN的值即為x=2時,y的值;(2)可在網(wǎng)格圖中直接畫出函數(shù)圖象;(3)由函數(shù)圖象可知函數(shù)的最小值.【詳解】(1)當(dāng)點P運動到點H時,AH=3,作HN⊥AB于點N.∵在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,∴∠HAN=42°,∴AN=HN=AH?sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案為:2.1;(2)(3)根據(jù)函數(shù)圖象可知,當(dāng)x=2時,函數(shù)有最小值y=4.2.故答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論