2023-2024學(xué)年山大附屬中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年山大附屬中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年山大附屬中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年山大附屬中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年山大附屬中學(xué)高考仿真卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年山大附屬中學(xué)高考仿真卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為()A.100 B.1000 C.90 D.902.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.為實(shí)現(xiàn)國民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實(shí)施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占2019年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見下表:實(shí)施項(xiàng)目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍4.若,則的虛部是()A. B. C. D.5.已知復(fù)數(shù),則()A. B. C. D.6.已知是虛數(shù)單位,則()A. B. C. D.7.已知數(shù)列的通項(xiàng)公式為,將這個數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.8.在直角中,,,,若,則()A. B. C. D.9.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.310.在復(fù)平面內(nèi),復(fù)數(shù)z=i對應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是()A. B. C. D.11.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.12.已知集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是公差不為0的等差數(shù)列的前n項(xiàng)和,且,則______.14.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.15.設(shè)α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.16.已知函數(shù)在處的切線與直線平行,則為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(江蘇省徐州市高三第一次質(zhì)量檢測數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動直線交拋物線:于點(diǎn),點(diǎn)為的焦點(diǎn).圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點(diǎn),過且垂直于的直線為,直線,分別與軸相交于點(diǎn),.當(dāng)線段的長度最小時,求的值.18.(12分)已知函數(shù)f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實(shí)數(shù)a,b滿足1a+119.(12分)某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機(jī)地從中抽取50個零件進(jìn)行檢查是否合格,若較多零件不合格,則需對其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機(jī)變量服從正態(tài)分布,則.20.(12分)如圖1,在邊長為4的正方形中,是的中點(diǎn),是的中點(diǎn),現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.21.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.22.(10分)已知函數(shù),.(1)當(dāng)x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;(2)當(dāng)x<0時,研究函數(shù)F(x)=h(x)﹣g(x)的零點(diǎn)個數(shù);(3)求證:(參考數(shù)據(jù):ln1.1≈0.0953).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支出在的同學(xué)的頻率為.故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.2、A【解析】

根據(jù)冪函數(shù)定義,求得的值,結(jié)合充分條件與必要條件的概念即可判斷.【詳解】∵當(dāng)函數(shù)為冪函數(shù)時,,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】

設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進(jìn)而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的倍.故選:B【點(diǎn)睛】本題考查了概率與統(tǒng)計(jì),考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.4、D【解析】

通過復(fù)數(shù)的乘除運(yùn)算法則化簡求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.5、B【解析】

利用復(fù)數(shù)除法、加法運(yùn)算,化簡求得,再求得【詳解】,故.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的除法運(yùn)算、加法運(yùn)算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.6、B【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則,直接計(jì)算,即可得出結(jié)果.【詳解】.故選B【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法,熟記運(yùn)算法則即可,屬于基礎(chǔ)題型.7、D【解析】

由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點(diǎn)睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8、C【解析】

在直角三角形ABC中,求得,再由向量的加減運(yùn)算,運(yùn)用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計(jì)算即可得到所求值.【詳解】在直角中,,,,,

,

若,則故選C.【點(diǎn)睛】本題考查向量的加減運(yùn)算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.9、A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點(diǎn)睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.10、A【解析】

由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時針旋轉(zhuǎn),得到向量的坐標(biāo),則對應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點(diǎn)Z(0,1),

∴=(0,1),將繞原點(diǎn)O逆時針旋轉(zhuǎn)得到,

設(shè)=(a,b),,則,即,

又,解得:,∴,對應(yīng)復(fù)數(shù)為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.11、C【解析】

轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.12、C【解析】

由題意和交集的運(yùn)算直接求出.【詳解】∵集合,∴.故選:C.【點(diǎn)睛】本題考查了集合的交集運(yùn)算.集合進(jìn)行交并補(bǔ)運(yùn)算時,常借助數(shù)軸求解.注意端點(diǎn)處是實(shí)心圓還是空心圓.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】

將已知已知轉(zhuǎn)化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達(dá)式的值.【詳解】因?yàn)?,所?故填:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,考查等差數(shù)列的性質(zhì)以及求和,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】

先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數(shù)有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點(diǎn)睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.15、④【解析】

根據(jù)直線和平面,平面和平面的位置關(guān)系依次判斷每個選項(xiàng)得到答案.【詳解】對于①,當(dāng)m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當(dāng)m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當(dāng)α∥β,且m?α,n?β時,由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯誤;對于④,當(dāng)α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.【點(diǎn)睛】本題考查了直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.16、【解析】

根據(jù)題意得出,由此可得出實(shí)數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)見解析.【解析】試題分析:(1)設(shè)根據(jù)題意得到,化簡得到軌跡方程;(2)設(shè),,,,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.解析:(1)因?yàn)閽佄锞€的方程為,所以的坐標(biāo)為,設(shè),因?yàn)閳A與軸、直線都相切,平行于軸,所以圓的半徑為,點(diǎn),則直線的方程為,即,所以,又,所以,即,所以的方程為.(2)設(shè),,,由(1)知,點(diǎn)處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時,取得極小值也是最小值,即取得最小值,此時.點(diǎn)睛:求軌跡方程,一般是問誰設(shè)誰的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進(jìn)行運(yùn)算也可以轉(zhuǎn)化為斜率來理解,然后借助韋達(dá)定理求解即可運(yùn)算此類題計(jì)算一定要仔細(xì).18、(Ⅰ){x|-3≤x≤2}(Ⅱ)見證明【解析】

(Ⅰ)由題意結(jié)合不等式的性質(zhì)零點(diǎn)分段求解不等式的解集即可;(Ⅱ)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(Ⅰ)①當(dāng)x>1時,f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②當(dāng)-2≤x≤1時,f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③當(dāng)x<-2時,f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.綜上所述,原不等式的解集為{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1當(dāng)且僅當(dāng)-2≤x≤1時,等號成立.∴f(x)的最小值m=3.∴[(即2a當(dāng)且僅當(dāng)2a×1又1a+1b=∴2a【點(diǎn)睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,絕對值三角不等式求最值的方法等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19、(1)見解析(2)需要,見解析【解析】

(1)由零件的長度服從正態(tài)分布且相互獨(dú)立,零件的長度滿足即為合格,則每一個零件的長度合格的概率為,滿足二項(xiàng)分布,利用補(bǔ)集的思想求得,再根據(jù)公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿足二項(xiàng)分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當(dāng)充分大時,,所以為了使損失盡量小,小張需要檢查其余所有零件.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用,考查二項(xiàng)分布的期望,考查補(bǔ)集思想的應(yīng)用,考查分析能力與數(shù)據(jù)處理能力.20、(1)證明見解析;(2).【解析】

(1)利用線面平行的定義證明即可(2)取的中點(diǎn),并分別連接,,然后,證明相應(yīng)的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,利用坐標(biāo)運(yùn)算進(jìn)行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點(diǎn),所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點(diǎn),并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎(chǔ)題21、(1)(2)特征值為或.【解析】

(1)先設(shè)矩陣,根據(jù),按照運(yùn)算規(guī)律,即可求出矩陣.(2)令矩陣的特征多項(xiàng)式等于,即可求出矩陣的特征值.【詳解】解:(1)設(shè)矩陣由題意,因?yàn)?所以,即所以,(2)矩陣的特征多項(xiàng)式,令,解得或,所以矩陣的特征值為1或.【點(diǎn)睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學(xué)生的劃歸與轉(zhuǎn)化能力和運(yùn)算求解能力.22、(1);(2)見解析;(3)見解析【解析】

(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導(dǎo)數(shù),討論a>1和a≤1,判斷導(dǎo)數(shù)的符號,由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導(dǎo)數(shù)和二階導(dǎo)數(shù),判斷F'(x)的單調(diào)性,討論a≤﹣1,a>﹣1,F(xiàn)(x)的單調(diào)性和零點(diǎn)個數(shù);(3)由(1)知,當(dāng)a=1時,ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當(dāng)a=﹣1時,對x<0恒成立,令,結(jié)合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論