![2023-2024學(xué)年浙江省五校鎮(zhèn)海中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view5/M01/35/3C/wKhkGGYd5wOASI-sAAHbSy0etFY476.jpg)
![2023-2024學(xué)年浙江省五校鎮(zhèn)海中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view5/M01/35/3C/wKhkGGYd5wOASI-sAAHbSy0etFY4762.jpg)
![2023-2024學(xué)年浙江省五校鎮(zhèn)海中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view5/M01/35/3C/wKhkGGYd5wOASI-sAAHbSy0etFY4763.jpg)
![2023-2024學(xué)年浙江省五校鎮(zhèn)海中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view5/M01/35/3C/wKhkGGYd5wOASI-sAAHbSy0etFY4764.jpg)
![2023-2024學(xué)年浙江省五校鎮(zhèn)海中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view5/M01/35/3C/wKhkGGYd5wOASI-sAAHbSy0etFY4765.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年浙江省五校(鎮(zhèn)海中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若集合,,則=()A. B. C. D.2.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.設(shè),是非零向量,若對(duì)于任意的,都有成立,則A. B. C. D.4.正方體,是棱的中點(diǎn),在任意兩個(gè)中點(diǎn)的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.65.在的展開(kāi)式中,的系數(shù)為()A.-120 B.120 C.-15 D.156.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.7.已知集合,,則集合子集的個(gè)數(shù)為()A. B. C. D.8.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)9.已知復(fù)數(shù)滿足,則=()A. B.C. D.10.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要11.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為()A.9 B.10 C.18 D.2012.為雙曲線的左焦點(diǎn),過(guò)點(diǎn)的直線與圓交于、兩點(diǎn),(在、之間)與雙曲線在第一象限的交點(diǎn)為,為坐標(biāo)原點(diǎn),若,且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列遞增的等比數(shù)列,若,,則______.14.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項(xiàng)和為_(kāi)____15.過(guò)且斜率為的直線交拋物線于兩點(diǎn),為的焦點(diǎn)若的面積等于的面積的2倍,則的值為_(kāi)__________.16.設(shè)常數(shù),如果的二項(xiàng)展開(kāi)式中項(xiàng)的系數(shù)為-80,那么______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對(duì)數(shù)的底,k為常數(shù))有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.18.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點(diǎn)個(gè)數(shù).19.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.20.(12分)在平面直角坐標(biāo)系中,點(diǎn)是直線上的動(dòng)點(diǎn),為定點(diǎn),點(diǎn)為的中點(diǎn),動(dòng)點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)過(guò)點(diǎn)的直線交曲線于,兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線于,兩點(diǎn).問(wèn)是否為定值?若是,求的值;若不是,請(qǐng)說(shuō)明理由.21.(12分)我國(guó)在貴州省平塘縣境內(nèi)修建的500米口徑球面射電望遠(yuǎn)鏡(FAST)是目前世界上最大單口徑射電望遠(yuǎn)鏡.使用三年來(lái),已發(fā)現(xiàn)132顆優(yōu)質(zhì)的脈沖星候選體,其中有93顆已被確認(rèn)為新發(fā)現(xiàn)的脈沖星,脈沖星是上世紀(jì)60年代天文學(xué)的四大發(fā)現(xiàn)之一,脈沖星就是正在快速自轉(zhuǎn)的中子星,每一顆脈沖星每?jī)擅}沖間隔時(shí)間(脈沖星的自轉(zhuǎn)周期)是-定的,最小小到0.0014秒,最長(zhǎng)的也不過(guò)11.765735秒.某-天文研究機(jī)構(gòu)觀測(cè)并統(tǒng)計(jì)了93顆已被確認(rèn)為新發(fā)現(xiàn)的脈沖星的自轉(zhuǎn)周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現(xiàn)的脈沖星中,自轉(zhuǎn)周期在2至10秒的大約有多少顆?(2)根據(jù)頻率分布直方圖,求新發(fā)現(xiàn)脈沖星自轉(zhuǎn)周期的平均值.22.(10分)如圖,三棱柱中,側(cè)面是菱形,其對(duì)角線的交點(diǎn)為,且.(1)求證:平面;(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】試題分析:化簡(jiǎn)集合故選C.考點(diǎn):集合的運(yùn)算.2、C【解析】
根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.3、D【解析】
畫(huà)出,,根據(jù)向量的加減法,分別畫(huà)出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長(zhǎng)最小的向量,如圖,當(dāng),即時(shí),最小,滿足,對(duì)于任意的,所以本題答案為D.【點(diǎn)睛】本題主要考查了空間向量的加減法,以及點(diǎn)到直線的距離最短問(wèn)題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.4、B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點(diǎn)睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡(jiǎn)單的組合問(wèn)題,是一中檔題.5、C【解析】
寫出展開(kāi)式的通項(xiàng)公式,令,即,則可求系數(shù).【詳解】的展開(kāi)式的通項(xiàng)公式為,令,即時(shí),系數(shù)為.故選C【點(diǎn)睛】本題考查二項(xiàng)式展開(kāi)的通項(xiàng)公式,屬基礎(chǔ)題.6、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)?,所以有:是方程的二?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.7、B【解析】
首先求出,再根據(jù)含有個(gè)元素的集合有個(gè)子集,計(jì)算可得.【詳解】解:,,,子集的個(gè)數(shù)為.故選:.【點(diǎn)睛】考查列舉法、描述法的定義,以及交集的運(yùn)算,集合子集個(gè)數(shù)的計(jì)算公式,屬于基礎(chǔ)題.8、C【解析】
由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.9、B【解析】
利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡(jiǎn)即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.10、B【解析】
由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時(shí),存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點(diǎn)睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.11、B【解析】
由已知可得函數(shù)f(x)的周期與對(duì)稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對(duì)稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時(shí),f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.12、D【解析】
過(guò)點(diǎn)作,可得出點(diǎn)為的中點(diǎn),由可求得的值,可計(jì)算出的值,進(jìn)而可得出,結(jié)合可知點(diǎn)為的中點(diǎn),可得出,利用勾股定理求得(為雙曲線的右焦點(diǎn)),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過(guò)點(diǎn)作,設(shè)該雙曲線的右焦點(diǎn)為,連接.,.,,,為的中點(diǎn),,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點(diǎn)睛】本題考查雙曲線離心率的求解,解題時(shí)要充分分析圖形的形狀,考查推理能力與計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
,建立方程組,且,求出,進(jìn)而求出的公比,即可求出結(jié)論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.
故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)、通項(xiàng)公式,屬于基礎(chǔ)題.14、【解析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.可得:2().利用裂項(xiàng)求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項(xiàng)和為2(1)=2(1).故答案為:.【點(diǎn)睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.15、2【解析】
聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點(diǎn)睛】此題考查了拋物線的性質(zhì),屬于中檔題.16、【解析】
利用二項(xiàng)式定理的通項(xiàng)公式即可得出.【詳解】的二項(xiàng)展開(kāi)式的通項(xiàng)公式:,令,解得.∴,解得.故答案為:-2.【點(diǎn)睛】本小題主要考查根據(jù)二項(xiàng)式展開(kāi)式的系數(shù)求參數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析【解析】
(1)求出,記,問(wèn)題轉(zhuǎn)化為方程有兩個(gè)不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點(diǎn),且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時(shí),,單調(diào)遞減,,時(shí),,單調(diào)遞增,,由題意,方程有兩個(gè)不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,記,則,因?yàn)?,所以,所以時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,因?yàn)?,,所?即函數(shù)的極大值不小于1.【點(diǎn)睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.18、(1);(2)極小值;(3)函數(shù)的零點(diǎn)個(gè)數(shù)為.【解析】
(1)求出和的值,利用點(diǎn)斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進(jìn)而可得出該函數(shù)的極小值;(3)由當(dāng)時(shí),以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1)因?yàn)?,所以.所以,.所以曲線在點(diǎn)處的切線為;(2)因?yàn)椋?,得或.列表如下?極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當(dāng)時(shí),函數(shù)有極小值;(3)當(dāng)時(shí),,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點(diǎn)個(gè)數(shù)為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程、極值以及利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問(wèn)題,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.19、(1)證明見(jiàn)解析;(2).【解析】
(1)取BC的中點(diǎn)O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求得二面角的余弦值,得到結(jié)果.【詳解】(1)取BC的中點(diǎn)O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設(shè),是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,如圖所示,則,,,設(shè)平面的一個(gè)法向量為,則,令,則,又平面的一個(gè)法向量為,所以二面角的余弦值為,即二面角的余弦值為.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問(wèn)題,涉及到的知識(shí)點(diǎn)有利用線面垂直證明線性垂直,利用向量法求二面角的余弦值,屬于中檔題目.20、(1);(2)是定值,.【解析】
(1)設(shè)出M的坐標(biāo)為,采用直接法求曲線的方程;(2)設(shè)AB的方程為,,,,求出AT方程,聯(lián)立直線方程得D點(diǎn)的坐標(biāo),同理可得E點(diǎn)的坐標(biāo),最后利用向量數(shù)量積算即可.【詳解】(1)設(shè)動(dòng)點(diǎn)M的坐標(biāo)為,由知∥,又在直線上,所以P點(diǎn)坐標(biāo)為,又,點(diǎn)為的中點(diǎn),所以,,,由得,即;(2)設(shè)直線AB的方程為,代入得,設(shè),,則,,設(shè),則,所以AT的直線方程為即,令,則,所以D點(diǎn)的坐標(biāo)為,同理E點(diǎn)的坐標(biāo)為,于是,,所以,從而,所以是定值.【點(diǎn)睛】本題考查了直接法求拋物線的軌跡方程、直線與拋物線位置關(guān)系中的定值問(wèn)題,在處理此類問(wèn)題一般要涉及根與系數(shù)的關(guān)系,本題思路簡(jiǎn)單,但計(jì)算量比較大,是一道有一定難度的題.21、(1)79顆;(2)5.5秒.【解析】
(1)利用各小矩形的面積和為1可得,進(jìn)而得到脈沖星自轉(zhuǎn)周期在2至10秒的頻率,從而得到頻數(shù);(2)平均值的估計(jì)值為各小矩形組中值與頻率的乘積的和得到.【詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉(zhuǎn)周期在2至10秒的大約有(顆).(2)新發(fā)現(xiàn)的脈沖星自轉(zhuǎn)周期平均值為(秒).故新發(fā)現(xiàn)的脈沖星自轉(zhuǎn)周期平均值為5.5秒.【點(diǎn)睛】本題考查頻率分布直方圖的應(yīng)用,涉及到平均數(shù)的估計(jì)值等知識(shí),是一道容易題.22、(1)見(jiàn)解析;(2).【解析】
(1)根據(jù)菱形的特征和題中條件得到平面,結(jié)合線面垂直的定義和判定定理即可證明;
2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年山東公務(wù)員考試申論試題(B卷)
- 系統(tǒng)設(shè)備安裝工作承攬合同(3篇)
- 2025年崗?fù)べ?gòu)買合同示范文本
- 2025年協(xié)調(diào)解除合同指導(dǎo)
- 2025年工程勘察服務(wù)項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 2025年企業(yè)零成本用車服務(wù)合同范本
- 2025年苯噻草胺項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模式
- 2025年二手奢侈品交易平臺(tái)合作協(xié)議
- 2025年協(xié)議書(shū)保證金實(shí)務(wù)指導(dǎo)
- 2025年體育場(chǎng)館租賃預(yù)付款協(xié)議
- 2024年山東公務(wù)員考試申論試題(B卷)
- 四年級(jí)數(shù)學(xué)(四則混合運(yùn)算帶括號(hào))計(jì)算題專項(xiàng)練習(xí)與答案
- 2024年中考語(yǔ)文(云南卷)真題詳細(xì)解讀及評(píng)析
- 2025年上半年山東氣象局應(yīng)屆高校畢業(yè)生招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 電梯消防安全與維護(hù)
- 【大學(xué)課件】工程倫理與社會(huì)
- 第二單元 主題活動(dòng)三《世界那么大我想去看看》(說(shuō)課稿)-2023-2024學(xué)年六年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)內(nèi)蒙古版
- 人教版2024-2025學(xué)年八年級(jí)上學(xué)期數(shù)學(xué)期末壓軸題練習(xí)
- 【人教版化學(xué)】必修1 知識(shí)點(diǎn)默寫小紙條(答案背誦版)
- 雙線大橋連續(xù)梁剛構(gòu)專項(xiàng)施工方案及方法
- 美容院前臺(tái)接待流程
評(píng)論
0/150
提交評(píng)論