版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
BlockchainFrameworkforArtificialIntelligenceComputation
JieYou1,2,*
1DasudianTechnologiesLtd.,Shenzhen,518057,China
2InstituteofComputerEngineering,HeidelbergUniversity,Heidelberg,69117,Germany
*
barco@
Abstract
Blockchainisanessentiallydistributeddatabaserecordingalltransactionsordigitaleventsamongparticipatingparties.Eachtransactionintherecordsisapprovedandverifiedbyconsensusoftheparticipantsinthesystemthatrequiressolvingahardmathematicalpuzzle,whichisknownasproof-of-work.Tomaketheapprovedrecordsimmutable,themathematicalpuzzleisnottrivialtosolveandthereforeconsumessubstantialcomputingresources.However,itisenergy-wastefultohavemanycomputationalnodesinstalledintheblockchaincompetingtoapprovetherecordsbyjustsolvingameaninglesspuzzle.Here,weposeproof-of-workasareinforcement-learningproblembymodelingtheblockchaingrowingasaMarkovdecisionprocess,inwhichalearningagentmakesanoptimaldecisionovertheenvironment’sstate,whereasanewblockisaddedandverified.Specifically,wedesigntheblockverificationandconsensusmechanismasadeepreinforcement-learningiterationprocess.Asaresult,ourmethodutilizesthedeterminationofstatetransitionandtherandomnessofactionselectionofaMarkovdecisionprocess,aswellasthecomputationalcomplexityofadeepneuralnetwork,collectivelytomaketheblocksnoteasytorecomputeandtopreservetheorderoftransactions,whiletheblockchainnodesareexploitedtotrainthesamedeepneuralnetworkwithdifferentdatasamples(state-actionpairs)inparallel,allowingthemodeltoexperiencemultipleepisodesacrosscomputingnodesbutatonetime.
Ourmethodisusedtodesignthenextgenerationofpublicblockchainnetworks,whichhasthepotentialnotonlytosparecomputationalresourcesforindustrialapplicationsbutalsotoencouragedatasharingandAImodeldesignforcommonproblems.
Introduction
SincetheappearanceofBitcoin1,blockchaintechnologieshavebroughtaboutdisruptionstotraditionalbusinessprocesses2,3,4,havebeenusedforindustrialadvance5-11,andhaveeventriggeredinnovationsinbiotechandmedicalapplications12-16.
Blockchainseekstominimizetheroleoftrustinachievingconsensus2.Therearedifferentconsensusmechanismsexit17,wherethemostwell-knownistheproof-of-workthatrequiressolvingacomplicatedcomputationalprocess,suchasfindinghasheswithspecificpatterns.Thisconsensusalgorithmdisincentivizesmisbehaviorbymakingitcostlyforanyagenttoalterthestate,sothereisnoneedfortrustinanyparticularcentralentity.Althoughthereareothermechanismsforachievingconsensus,proof-of-workisself-sufficientandrent-freesimultaneously18.
Proof-of-worksystemshaveseveralmajorbenefits.First,theyareanexcellentwaytodeterspammers.Inaddition,proof-of-worksystemscanbeusedtoprovidesecuritytoanentirenetwork.Ifenoughnodes
(computersordedicatedminingmachines)competetofindaspecificsolution,thenthecomputationalpowerneededtooverpowerandmanipulateanetworkbecomesunattainableforanysinglebadactororevenasinglegroupofbadactors.
However,thereisaprimarydisadvantagetoproof-of-worksystems.Theyconsumealargeamountofcomputingpowerandwasteenergy,asadditionalelectricityisusedforcomputerstoperformextracomputationalwork.Thiscanadduptoanextremelylargeamountofexcesselectricityconsumptionandenvironmentaldetriment19,20,21.
Machine-learningtechnologyhasbeenpoweringmanyaspectsofmodernsociety,fromwebsearchestocontentfilteringonsocialnetworkstorecommendationsone-commercewebsites,anditisincreasinglypresentinconsumerproductssuchascamerasandsmartphones.Machine-learningsystemsareusedtoidentifyobjectsinimages22,transcribespeechintotext23,matchnewsitems,postsorproductswithusers’interests,andselectrelevantsearchresults.ParticularlywiththeboomindigitaldataontheInternet,deeplearning,asarepresentation-learningmethod,hasshowngreatpowerindrivingmyriadintelligentapplicationsandwillhavemanymoresuccessesinthenearfuture24.Becauseitrequiresverylittleengineeringbyhand,deeplearningcaneasilytakeadvantageofincreasesintheamountofavailablecomputationanddata24.
Asonebranchofmachinelearningtechnology,reinforcementlearningisthetaskoflearningwhatactionstotake,givenacertainsituationorenvironment,tomaximizearewardsignal.Incontrasttodeeplearning,whichisasupervisedprocess,reinforcementlearningusestherewardsignaltodeterminewhethertheaction(orinput)thattheagenttakesisgoodorbad.Reinforcementlearninghasinspiredresearchinbothartificialandbiologicalintelligence25,26andhasbeenwidelyusedindynamictaskscheduling27,planningandcognitivecontrol28,andmoreinterestingtopicshavebeeninactiveresearch29.
Tousemachinelearninginpracticalscenarios,generallyplentyofcomputationalpowerisrequiredtosupportso-calledartificialintelligence(AI)modeltrainingandexecutionatdifferentscalesaccordingtothecomplexityofmodelsandtheamountofdatatobeprocessed.Forinstance,GPT-330andSwitchTransformers31haveshownthatAImodelperformancescalesasapowerlawofmodelsize,datasetsizeandamountofcomputation.ThecostofAIisincreasingexponentiallytoachievethedesiredtargetwithalargermodelsizeandmorecruncheddata.Ingeneral,whenAImodelsandthetrainingdatasetsarelargeenough,themodelsneedtobetrainedformorethanafewepochstolearnfullyfromthedataandgeneralizewell;therefore,thehardwarecostandtimecostarebothhighforwell-performingAIapplications.
Ontheonehand,blockchainsystemswastealargeamountofcomputationalpowertosolvethemeaninglesspuzzlesforproof-of-work,andontheotherhand,manyusefulAIapplicationsrequiresubstantialcomputingcapacitiestoachievehighperformance.Tobalancethesetwoaspects,inthispaper,wepresentablockchainmodelthatcombinesthecomputationforproof-of-workandforartificialintelligencemodellearningproceduresasoneprocess,achievingaconsensusmechanismofblockchainandartificialintelligencecomputationsimultaneouslyandinanefficientway.
Theblockchainmodel
Inthispaper,wemodeltheblockchainsystemasanagentofreinforcementlearning.AsdepictedbyFig.1,everyblockrepresentsastateofaMarkovstatemachine,whereasthecreationandlinkingprocessofblocksisaMarkovdecisionprocess(MDP)29,withthefollowingsetup:
Theenvironmentisdefinedasoracleinthisblockchainsystem,whichprovidesthedatatoblockchainviaitsstatetransitions(????→????+1).
Inthepresentstate(????),theagentchoosesanaction(????)accordingtothecurrentpolicy(????)and
receivesareward(????+1)fromtheenvironment,whilethestateoftheenvironmenttransformsfrom????to????+1.Afterwards,thenodesofblockchaintrainthepolicymodelandupdateitfrom????to????+1,whicharestoredinthememoryofcomputingnodesasthefunctionforchoosingthenextactionby
feedingthenextstate.Thecomputationthatoccursinthisprocessisdefinedastheproof-of-workforthecomputingnodes,whichcompetetodosointheblockchainsystem.
Computingnodesofthesystemcreateanewblock,recordingthecurrentstateofenvironment(????+1),thelastchosenaction(????),thereward(????+1)receivedfromtheenvironment,thedata(????+1)tobewrittenontoblockchainforatransaction,andtheHashvalueoflastblock(???+1=
???????(????,?????1,????,????,???)),asshowninFig.2.Whenanodefinishesthecomputationofproof-of-
workandcreatesanewblock,itissayingthataminingprocessiscompleted.
Whenaminingprocesscompletes,thenewlycreatedblockislinkedtothepreviousblockbythehashvalueofthepreviousblock(Fig.2).
Figure1Theblockchainmodelbasedonreinforcementlearning
Figure2Themechanismforblockstostoredataandbeinglinked
Inanyblockofthechain,thestoredHashvalueofthepreviousblockpreventsthedatafrombeingfalsifiedbecauseifanydataarechanged,theblock’sHashvaluemustbedifferentandinturnchangethedatastoredinthenextblock,whichinvalidatesthelinkageofblockswithinthechain.Inaddition,ifthestateoftheenvironment(????)oraction(?????1)storedinoneblockismodified,thenextstate(????+1),next
action(????)andreward(????+1)willprobablybedifferentfromthoseactuallystoredinthenextblockwhen
transformedbythepolicy,whichalsolargelydecreasesthepossibilityofandincreasesthedifficultyoftamperingwithdata.
Proof-of-work
Theproof-of-workalgorithmisimplementedasfollows:
Atpresentstate(????)chooseanaction(????)basedoncurrentpolicy(????);
Exert????ontotheenvironment,orsayinteractwiththeoracle,receivingareward(????+1),andthestateofenvironmentchangesto????+1;
Basedonthestatetransition(????→????+1),actionselected(????)andtherewardreceived(????+1),the
nodesofblockchaintrainthepredefinedaction-valuefunctionofthereinforcement-learningmodelandupdatethepolicyto????+1.
Inthispaper,theproof-of-workincludesthecomputingprocessesofselectingaction,generatingrewardregulatedbycurrentpolicy(????),andtrainingtheaction-valuefunctionmodelandupdatingthepolicy.ConsideringmanypracticalMDPproblems,thestatespacesarelargeenoughorevenwithunlimitedstates,whichrequirelargeandcomplicateddeepneuralnetworkstoachieveawell-performing
approximatoroftheaction-valuefunction,sothecomputationofproof-of-workishighlyresource-demanding.Therefore,anyattemptstotamperwithdataorhackthewholeblockchainarealmostunachievableduetothedauntingcostofcomputingresourcesandtime.
Consensusbasedonrewardingofreinforcement-learning
Whenanodeworkingfortheblockchainfinishesproof-of-work,orsayaminingprocess,itneedstosynchronizethenewlygeneratedblocktoothernodesinthenetworktoguaranteetheconsistencyofdatawithinthewholenetwork.However,becauseoftheoccurrencesofnetworkdelay,errorsandattacks,nodesmaykeepdifferentversionsoftheblockchaininformation,resultingininconsistency.Therefore,wedesignaconsensusmechanismfornodestoachievedataconsistencyacrossthewholenetwork,asfollows:
First,prioritizethelongestchain:ifnodeskeepchainsofdifferentlengths,thenthelongestchainsshouldbechosenastheprovenchains;
Ifatstep1,thereismorethanonechainkept,therearetwooptionalwaystodeterminethefinalchain:
Comparingtherewardvalue(??)atthelastblockofthechains,choosethechainwiththemaximumrewardasthefinalconsentedchain.
Comparingthesumofrewards(∑????)acrossallblocksofthechain,choosetheonewiththemaximumsummationasthefinalconsentedchain.
Althoughdifferentnodessharethesamepolicyalgorithm,theyexperienceself-uniquemodeltrainingand
policyupdatingprocessesandkeeptheirownaction-valuefunctionmodelandpolicyinstancesinmemory,whicharenotsynchronizedtoeachother,soforthesamestate(????),differentnodeswillnotnecessarilyselectthesameactionorreceivethesamereward.Thisbringsabouttwovaluableaspects:
Evenifmorethan51%ofthetotalnodeswithinthenetworkarehacked,whichattemptstofalsifythedataandregenerateanewchain,whentheycompletetheproof-of-work,themaximumreward
(????????)isnotdefinitelyreceivedbythembutratherpossiblybytheunhackednodes,inwhichcasethefalsifiedblockswillnotbeconsented.Thus,theconsensusmechanismdesignedinthispaperadditionallyenhancesthesafetyoftheblockchainsystembyreducingthepossibilityofbeinghampered.
Becauseeverynodekeepsitsowninstancesoftheaction-valuefunctionmodelandpolicyandcompetestoachievethemaximumreward(????????)byimplementingtheproof-of-work,thisallowsthereinforcement-learningalgorithmtolearnalongmorethanonepath(thenumberofpathsequalstheworkingnodeswithinthenetwork)onthesameenvironmentstateandatonetimepoint.It
equivalentlyreplacestimewithspaceforAImodeltraining,whichachievesmultipleepochsoftrainingatoneround.Inthisway,whiletheblockchainisgrowing,thereinforcement-learningalgorithmbackingitsproof-of-workandconsensusmechanismmorefullylearnsdiversified
possibilitiesandconvergesfaster,therebymakingmorepreciseprediction(????→????)asquickas
possible,whichisconducivetotheoverallgoalachievementinashortertermforthereinforcement-learningmodel.ThisisspecificallybeneficialforonlinelearningapplicationsofAI.
Insummary,theblockchainsystempresentedinthispaperisadistributedtrainingsystemforreinforcement-learningalgorithms,whichacceleratesthelearningprocessofAImodelswhilerealizingblockchainproperties.
Proof-of-workwithdeepQ-learning
Specifically,weusedeepQ-learning29,32,33asthepolicyupdatingalgorithmfortheagenttolearn.Theiterationoftheaction-valuefunctioninQ-learningisformulatedas:
??(????,????)←??(????,????)+??[????+1+????????????(????+1,??)???(????,????)] (1)
where??istheaction-valuefunctiontobelearnedfortheoptimaldecision;??and????+1aretheselectedactionandreceivedrewardatstate????+1,respectively;and??(0<??<1)and??(0<??<1)arethestep-sizeparameteranddiscount-rateparameter,respectively.
Adeepneuralnetworkisusedtorepresentthe??function,andeverynodeoftheblockchainwillbetheagenttolearnthe??functionanditeratesaccordingtoequation(1),withthepolicydeterminingwhichstate-actionpairsarevisitedandupdated.
Figure3TheblockchainmodelbasedondeepQ-learning
AsshowninFig.3,atanytimestep??thenodesoftheblockchaincalculatetheoptimalaction????accordingtothecurrent??functionandstate????andthenupdatethe??functionaccordingtoformula(1)forthenextstate.Specifically,inthisresearch,werepresentthe??functionasadeepneuralnetwork.As
illustratedinFig.4,thesectioninredrepresentsthetarget,whichhasthesameneuralnetworkarchitectureasthe??functionapproximator(sectioningreen)butwithfrozenparameters.Forevery??iterations(ahyperparameter),theparametersfromthepredictionnetworkarecopiedtothetargetnetwork.AlossfunctionisdefinedasthemeansquarederrorofthetargetQ-valueandpredictedQ-value:
????????=(??+??????????(??
,??;??′)???(??,??;??)2 (2)
?? ??+1
?? ?? )
where??′and??representtheparametersofthetargetnetworkandpredictionnetwork,respectively.Then,thisisbasicallyaregressionproblem,wherethepredictionnetworkupdatesitsgradientusingbackpropagationtoconverge.
Figure4SchematicdiagramforQfunctioniterationanditsneuralnetworkrepresentations
ThestepsinvolvedinthedeepQ-learningprocedureforeverynodeoftheblockchainareasfollows:
Attimestep??,everynodefeedsstate????intothepredictionQnetwork,whichwillreturntheQ-valuesofallpossibleactionsinthestate.
Selectsanactionusinganepsilon-greedypolicy:withprobabilityepsilon(0<??<1)toselectarandomactionandwithprobability1???toselectanactionthathasamaximumQ-value,suchas
????????????(??(????,??;??).
Performsthisaction????instate????andmovestoanewstate????+1toreceivereward????+1.Writesthistransitioninformationintoanewblockandstoresitinareplaybufferofthenodeas
(????,????,????+1,????+1).
Next,samplessomerandombatchesoftransitionsfromthereplaybufferandcalculatesthelossdefinedbyequation(2).
Gradientdescentisperformedwithrespecttothepredictionnetworkparameterstominimizethisloss.Then,thenodefinishesonceproof-of-workcomputationandprovesanewlygeneratedblock.
Afterevery??iterations,copiesthepredictedQnetworkweightstothetargetnetworkweights.
Repeatabovesteps.
Theawardingmechanismformining
Inthisframework,thecomputationsforthereinforcement-learningalgorithmandparticularlyforthetrainingofdeepneuralnetworksareassignedtothenodes(miningmachines)ofblockchaintocompetefortheproof-of-work,andafternodescompletetheproof-of-work,thenodesthatarefastesttofinishthecomputationandreceivethemaximumrewardcanfinallywintoprovetheblocks,whichistheconsensusmechanismofthisblockchain.Thus,inourdesign,westipulatethemaximumreward????????astheaward
tothenodethatfinallywinsthecompetitionofproof-of-workandconsensustoencouragemore
computerswithbettercapacitytojointheblockchainnetworkandcontributetoartificialintelligencecomputations.Thisawardvalue????????iscalledthetokenofthisblockchain.
Conclusion
Inthispaper,wepresentablockchainframeworkthatorganicallystitchescomputationsforreinforcement-learningandproof-of-workaswellasaconsensusmechanism,achievingaversatiledistributedcomputingsystem.Ontheonehand,takingadvantageofthecomplexityandhighcomputingcostofthereinforcement-learningprocessanddeepneuralnetworktrainingincreasesthedifficultyofhackingtheblockchainnetworkorfalsifyingthedata.Inparticular,becausethenodeskeepself-ownedinstancesofpolicyandneuralnetworks,theykeepuncertaintiesofstatetransition(????→????+1)andaction
selectionthatmaybedifferentnodesfromnodes.Theseuncertaintiesadditionallyconsolidatethestability
ofchainlinkagesthataredifficultforhackerstomutate.Theconsensusmechanismofmaximum-reward-winaddsanadditionalbarrierdeterringhackerstotamperwiththechain.Ontheotherhand,utilizingthenodeswithintheblockchainnetworktofulfilthetrainingandrunningofAIalgorithmsnaturallycontributescomputingpowertopracticalintelligentapplications.Meanwhile,bydistributingtheAImodeltrainingtomultiplenodesthatsimultaneouslycrunchthesamedatageneratedbytheenvironment,orsayingoracleinthisblockchainsystem,thenodeskeeptheirowninstancesoftheAImodel,sothenodesexperiencedifferentpathsoflearningwithdifferentparametervaluesandhiddenstatesoftheAImodelateverytimestep.Thisequivalentlyimplementsmultipleepochsoftrainingwithinonlyoneroundofthelearningprocess,whichimprovesthetrainingefficiencyandacceleratestheconvergenceofmodels.
Discussion
TheblockchainframeworkpresentedinthispaperpavesanavenueforAIapplicationsthatrequireintensivecomputingpowerandaquickergeneralizationrateandacrediblenetworkforfeedingdatatoAImodels.Therefore,thisprovidesapotentialsolutionforfacilitatingthedevelopmentofindustrialintelligence,whichhasbeendevelopingslowlyduetoalackofdata,becauseenterprisesinindustrial
verticalsarenotwillingtosharetheirassets.Inaddition,inindustry,thereareeitherinsufficientprofessionalAItalentorcomputingcapacitiesforAIapplications,sothisblockchainframeworkcouldprovideanopenplatformencouragingAIprofessionalstocontributetheirexpertiseaswellascomputingresourcessupportingtheadvancementofindustry.Furthermore,thisframeworkisparticularlypragmaticfornonepisodicreinforcement-learningproblemswithmodelscontinuouslyadaptingtotheenvironment,suchasfinancialmarkets,IoTnetworksandfactoryoperations.
Ultimately,itcouldbeexpectedthatbycombiningblockchainandartificialintelligenceintoonecomputationalframework,thetwomostimportantresources,dataandcomputingpower,canbeutilizedinamutuallysupportivewayoveracreditableplatformthatencouragesmoreinnovationsinartificialintelligenceapplications.Finally,webelievethatthisblockchainframeworkforAIcomputationcouldbeapotentialbackboneoftheindustrialInternet.
References
Nakamoto,S.Bitcoin:APeer-to-PeerElectronicCashSystem./bitcoin.pdf(2008).
Casino,F.,Dasaklis,T.K.&Patsakis,C.Asystematicliteraturereviewofblockchain-basedapplications:Currentstatus,classificationandopenissues.TelematicsandInformatics,36,55-81(2019).
Viriyasitavat,W.&Hoonsopon,D.Blockchaincharacteristicsandconsensusinmodernbusinessprocesses.JournalofIndustrialInformationIntegration,13,32-39(2019).
Pal,A.,Tiwari,C.K.&Haldar,N.Blockchainforbusinessmanagement:Applications,challengesandpotentials.TheJournalofHighTechnologyManagementResearch,32,Issue2(2021).
Javaid,M.etal.BlockchaintechnologyapplicationsforIndustry4.0:Aliterature-basedreview.
Blockchain:ResearchandApplications(2021).
Elghaish,F.etal.Blockchainandthe‘InternetofThings'fortheconstructionindustry:researchtrendsandopportunities.AutomationinConstruction,132(2021).
Esmaeilian,B.etal.BlockchainforthefutureofsustainablesupplychainmanagementinIndustry4.0.Resources.ConservationandRecycling,163(2020).
Liu,X.L.etal.Industrialblockchainbasedframeworkforproductlifecyclemanagementinindustry
4.0.RoboticsandComputer-IntegratedManufacturing,63(2020).
Leng,J.etal.Blockchain-empoweredsustainablemanufacturingandproductlifecyclemanagementinindustry4.0:Asurvey.RenewableandSustainableEnergyReviews,132(2020).
Gupta,R.etal.Blockchain-basedsecurityattackresilienceschemesforautonomousvehiclesinindustry4.0:Asystematicreview.Computers&ElectricalEngineering,86(2020).
Mehta,D.etal.Blockchain-basedroyaltycontracttransactionsschemeforIndustry4.0supply-chainmanagement.InformationProcessing&Management,58,Issue4(2021).
Wong,D.R.,Bhattacharya,S.&Butte,A.J.Prototypeofrunningclinicaltrialsinanuntrustworthyenvironmentusingblockchain.NatCommun10,917(2019).
Mamo,N.etal.Dwarna:ablockchainsolutionfordynamicconsentinbiobanking.EurJHumGenet
28,609–626(2020).
DeFrancesco,L.&Klevecz,A.YourDNAbroker.NatBiotechnol37,842–847(2019).
Guo,X.etal.Smartphone-basedDNA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滬教版八年級科學下冊階段測試試卷含答案
- 二零二五年離婚房產(chǎn)交易傭金支付與爭議解決合同3篇
- 2024年虛擬現(xiàn)實游戲內(nèi)容制作與分發(fā)合同
- 二零二五年度鋼筋加工專業(yè)勞動合同模板3篇
- 二零二五年度車輛檢測與維修外包合作協(xié)議3篇
- 2025-2030年中國個人搬家行業(yè)發(fā)展動態(tài)及前景趨勢分析報告新版
- 2025年人教版(2024)二年級語文下冊月考試卷含答案
- 2025年人教A版九年級物理上冊月考試卷含答案
- 2025年人教A版必修2物理下冊月考試卷
- 二零二五年度農(nóng)業(yè)項目采購合同參考3篇
- 元旦節(jié)前安全教育培訓-教學課件
- 三氟乙酰氯(CAS:354-32-5)理化性質(zhì)及危險特性表
- SL 537-2011 水工建筑物與堰槽測流規(guī)范
- 質(zhì)量管理-AQL抽樣基礎(chǔ)知識培訓課件
- 劇本殺·劇本-四人本《暗船》
- 《普通話》教學講義課件
- 陜西省西安市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 《高分子材料分析技術(shù)》全套教學課件
- 水利工程管理單位定崗標準(試點)
- 合肥工業(yè)大學推免生綜合評價加分細則
- 保潔工作內(nèi)部質(zhì)量監(jiān)督及外部考核方案
評論
0/150
提交評論