重慶市渝中學區(qū)求精中學2024屆八年級數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第1頁
重慶市渝中學區(qū)求精中學2024屆八年級數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第2頁
重慶市渝中學區(qū)求精中學2024屆八年級數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第3頁
重慶市渝中學區(qū)求精中學2024屆八年級數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第4頁
重慶市渝中學區(qū)求精中學2024屆八年級數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

重慶市渝中學區(qū)求精中學2024屆八年級數(shù)學第二學期期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.若樣本數(shù)據(jù)3,4,2,6,x的平均數(shù)為5,則這個樣本的方差是()A.3 B.5 C.8 D.22.我國古代用勾、股和弦分別表示直角三角形的兩條直角邊和斜邊,如圖由四個全等的直角三角形和一個小正方形拼成一個大正方形,數(shù)學家鄒元治利用該圖證明了勾股定理,現(xiàn)已知大正方形面積為9,小正方形面積為5,則每個直角三角形中勾與股的差的平方為()A.4 B.3 C.2 D.13.如圖,在中,點是邊上一點,,過點作交于,若是等腰三角形,則下列判斷中正確的是()A. B. C. D.4.如圖,直線y=-x+m與直線y=nx+5n(n≠0)的交點的橫坐標為-2,則關于x的不等式-x+m>nx+5n>0的整數(shù)解為()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-25.若不等式組有解,則實數(shù)a的取值范圍是()A.a(chǎn)<-36 B.a(chǎn)≤-36 C.a(chǎn)>-36 D.a(chǎn)≥-366.若m>n,則下列各式錯誤的是(

)A.2m<2n B.-3m<-3n C.m+1>n+1 D.m-5>n-57.計算的正確結果是()A. B.1 C. D.﹣18.下面式子從左邊到右邊的變形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)9.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,點D在邊BC上,點E在線段AD上,EF⊥AC于點F,EG⊥EF交AB于點G,若EF=EG,則CD的長為()A.3.6 B.4 C.4.8 D.510.己知一個多邊形的內(nèi)角和是360°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標系中,菱形ABCD的頂點A在x軸負半軸上,頂點B在x軸正半軸上.若拋物線p=ax2-10ax+8(a>0)經(jīng)過點C、D,則點B的坐標為________.12.反比例函數(shù)y=kx(k>0)在第一象限內(nèi)的圖象如圖,點M是圖象上一點,MP垂直x軸于點P,如果△MOP的面積為1,那么k的值是________13.如圖,正方形中,,點在邊上,且.將沿對折至,延長交邊于點.連結、.下列結論:①;②;③是正三角形;④的面積為1.其中正確的是______(填所有正確答案的序號).14.如圖,在□ABCD中,E為BC中點,DE、AC交于F點,則=_______.15.已知1<x<5,化簡+|x-5|=____.16.如圖,在平行四邊形ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點E作EF⊥AB于點F,交DC的延長線于點G,則DE=_____.17.如圖,在中,,底邊在軸正半軸上,點在第一象限,延長交軸負半軸于點,延長到點,使,若雙曲線經(jīng)過點,則的面積為________.18.如圖,在中,為邊上一點,以為邊作矩形.若,,則的大小為______度.三、解答題(共66分)19.(10分)某中學積極倡導陽光體育運動,提高中學生身體素質(zhì),開展跳繩比賽,下表為該校6年1班40人參加跳繩比賽的情況,若標準數(shù)量為每人每分鐘100個.(1)求6年1班40人一分鐘內(nèi)平均每人跳繩多少個?(2)規(guī)定跳繩超過標準數(shù)量,每多跳1個繩加3分;規(guī)定跳繩未達到標準數(shù)量,每少跳1個繩,扣1分,若班級跳繩總積分超過250分,便可得到學校的獎勵,通過計算說明6年1班能否得到學校獎勵?20.(6分)南開兩江中學校初一年級在3月18日聽了一堂“樹的暢想”的景觀設計課,隨后在本年級學生中進行了活動收獲度調(diào)查,采取隨機抽樣的調(diào)查方式進行網(wǎng)絡問卷調(diào)查,問卷調(diào)查的結果分為“非常有收獲”“比較有收獲”“收獲一般”“沒有太大的收獲”四個等級,分別記作A、B、C、D并根據(jù)調(diào)查結果繪制兩幅不完整統(tǒng)計圖:(1)這次一共調(diào)查了_______名學生,并將條形統(tǒng)計圖補充完整(2)請在參與調(diào)查的這些學生中,隨機抽取一名學生,求抽取到的學生對這次“樹的暢想”的景觀設計課活動收獲度是“收獲一般”或者“沒有太大的收獲”的概率21.(6分)我們給出如下定義:把對角線互相垂直的四邊形叫做“正交四邊形”.如圖1,在四邊形ABCD中,AC⊥BD,四邊形ABCD就是“正交四邊形”.(1)下列四邊形,一定是“正交四邊形”的是______.①平行四邊形②矩形③菱形④正方形(2)如圖2,在“正交四邊形”ABCD中,點E、F、G、H(3)小明說:“計算‘正交四邊形’的面積可以仿照菱形的方法,面積是對角線之積的一半.”小明的說法正確嗎?如果正確,請給出證明;如果錯誤,請給出反例.22.(8分)請閱讀材料,并完成相應的任務.阿波羅尼奧斯(約公元前262~190年),古希臘數(shù)學家,與歐幾里得、阿基米德齊名.他的著作《圓錐曲線論》是古代世界光輝的科學成果,可以說是代表了希臘幾何的最高水平.阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線的長度關系,即三角形任意兩邊的平方和等于第三邊的一半與該邊中線的平方和的2倍.(1)下面是該結論的部分證明過程,請在框內(nèi)將其補充完整;已知:如圖1所示,在銳角中,為中線..求證:證明:過點作于點為中線設,,,在中,在中,__________在中,____________________(2)請直接利用阿波羅尼奧斯定理解決下面問題:如圖2,已知點為矩形內(nèi)任一點,求證:(提示:連接、交于點,連接)23.(8分)如圖,一架2.5m長的梯子AB斜靠在一豎直的墻AO上,這時AO為2.4m,如果梯子的頂端A沿墻下滑0.4m,則梯子底端B也外移0.4m嗎?為什么?24.(8分)為了響應“足球進學?!钡奶栒?,某學校準備到體育用品批發(fā)市場購買A型號與B型號兩種足球,其中A型號足球的批發(fā)價是每個200元,B型號足球的批發(fā)價是每個250元,該校需購買A,B兩種型號足球共100個.(1)若該校購買A,B兩種型號足球共用了22000元,則分別購買兩種型號足球多少個?(2)若該校計劃購進A型號足球的數(shù)量不多于B型號足球數(shù)量的9倍,請求出最省錢的購買方案,并說明理由25.(10分)如圖,△ABC中,AB=AC,BC=4cm,作AD⊥BC,垂足為D,若AD=4cm,求AB的長.26.(10分)如圖,在平面直角坐標系中,已知一次函數(shù)的圖象與過、的直線交于點P,與x軸、y軸分別相交于點C和點D.求直線AB的解析式及點P的坐標;連接AC,求的面積;設點E在x軸上,且與C、D構成等腰三角形,請直接寫出點E的坐標.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】

先由平均數(shù)是5計算出x的值,再計算方差.【詳解】解:∵數(shù)據(jù)3,4,2,6,x的平均數(shù)為5,∴,解得:x=10,則方差為×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,故選:C.【點睛】本題考查的是平均數(shù)和方差的求法.計算方差的步驟是:①計算數(shù)據(jù)的平均數(shù);②計算偏差,即每個數(shù)據(jù)與平均數(shù)的差;③計算偏差的平方和;④偏差的平方和除以數(shù)據(jù)個數(shù).2、D【解析】

設勾為x,股為y,根據(jù)面積求出xy=2,根據(jù)勾股定理求出x2+y2=5,根據(jù)完全平方公式求出x﹣y即可.【詳解】設勾為x,股為y(x<y),∵大正方形面積為9,小正方形面積為5,∴4×xy+5=9,∴xy=2,∵x2+y2=5,∴y﹣x====1,(x﹣y)2=1,故選:D.【點睛】本題考查了勾股定理和完全平方公式,能根據(jù)已知和勾股定理得出算式xy=2和x2+y2=5是解此題的關鍵.3、B【解析】

根據(jù)等腰三角形的性質(zhì)得到根據(jù)垂直的性質(zhì)得到根據(jù)等量代換得到又即可得到根據(jù)同角的余角相等即可得到.【詳解】,,從而是等腰三角形,,故選:B.【點睛】考查等腰三角形的性質(zhì),垂直的性質(zhì),三角形的內(nèi)角和定理,掌握同角的余角相等是解題的關鍵.4、B【解析】

根據(jù)一次函數(shù)圖像與不等式的性質(zhì)即可求解.【詳解】直線y=nx+5n中,令y=0,得x=-5∵兩函數(shù)的交點橫坐標為-2,∴關于x的不等式-x+m>nx+5n>0的解集為-5<x<-2故整數(shù)解為-4,-3,故選B.【點睛】此題主要考查一次函數(shù)與不等式的關系,解題的關鍵是熟知一次函數(shù)的圖像與性質(zhì).5、C【解析】,解不等式①得,x<a-1,解不等式②得,x≥-37,因為不等式組有解,所以-37<a-1,解得:a>-36,故選C.6、A【解析】

按照不等式的性質(zhì)逐項排除即可完成解答?!驹斀狻拷猓骸適>n∴2m>2n,故A錯誤;’-3m<-3n則B正確;m+1>n+1,即C正確;m-5>n-5,即D正確;故答案為A;【點睛】本題考查了不等式的基本性質(zhì),即給不等式兩邊同加或減去一個整數(shù),不等號方向不變;給不等式兩邊同乘以一個正數(shù),不等號方向不變;給不等式兩邊同乘以一個負數(shù),不等號方向改變;7、A【解析】8、B【解析】

根據(jù)因式分解的定義即可判斷.【詳解】A.含有加減,不是因式分解;B.是因式分解;C.是整式的運算,不是因式分解;D.含有分式,不是因式分解.故選B【點睛】此題主要考查因式分解的定義:把一個多項式化為幾個整式的乘積形式.9、B【解析】

過點D作DH⊥BC交AB于點H,根據(jù)△AFE∽△ACD和△AEG∽△ADH可得DC=DH,再由△BDH∽△BCA,根據(jù)相似三角形的性質(zhì)列出方程即可求出CD.【詳解】解:過點D作DH⊥BC交AB于點H,∵EF⊥AC,∴EF∥BC,∴△AFE∽△ACD,∴,∵DH⊥BC,EG⊥EF,∴DH∥EG,∴△AEG∽△ADH,∴,∴∵EF=EG,∴DC=DH,設DH=DC=x,則BD=12-x,又∵△BDH∽△BCA,∴,即,解得:x=4,即CD=4,故選B.【點睛】本題考查了相似三角形的判定和性質(zhì),根據(jù)相似的性質(zhì)得到DC=DH是解題關鍵.10、A【解析】

根據(jù)多邊形的內(nèi)角和公式即可求解.【詳解】設邊數(shù)為n,則(n-2)×180°=360°,解得n=4故選A.【點睛】此題主要考查多邊形的內(nèi)角和,解題的關鍵是熟知公式的運用.二、填空題(每小題3分,共24分)11、(4,0)【解析】

根據(jù)拋物線p=ax2?10ax+8(a>0)經(jīng)過點C、D和二次函數(shù)圖象具有對稱性,可以求得該拋物線頂點的橫坐標和CD的長,然后根據(jù)菱形的性質(zhì)和勾股定理可以求得AO的長,從而可以求得OB的長,進而寫出點B的坐標.【詳解】解:∵拋物線p=ax2?10ax+8=a(x?5)2?25a+8,∴該拋物線的頂點的橫坐標是x=5,當x=0時,y=8,∴點D的坐標為:(0,8),∴OD=8,∵拋物線p=ax2?10ax+8(a>0)經(jīng)過點C、D,CD∥AB∥x軸,∴CD=5×2=10,∴AD=10,∵∠AOD=90°,OD=8,AD=10,∴AO=,∵AB=10,∴OB=10?AO=10?6=4,∴點B的坐標為(4,0),故答案為:(4,0)【點睛】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征、菱形的性質(zhì),解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結合的思想解答.12、1【解析】

過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,即S=12【詳解】解:由題意得:S△MOP=12又因為函數(shù)圖象在一象限,所以k=1.故答案為:1.【點睛】主要考查了反比例函數(shù)y=kx中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得三角形面積為12|k|,是經(jīng)常考查的一個知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解13、①②④【解析】

①根據(jù)折疊的性質(zhì)可以得到∠B=∠AFG=1°,AB=AF,AG=AG,根據(jù)HL定理即可證明兩三角形全等;②不妨設BG=FG=x,(x>0),則CG=30-x,EG=10+x,在Rt△CEG中,利用勾股定理即可列方程求得;③利用②得出的結果,結合折疊的性質(zhì)求得答案即可;④根據(jù)三角形的面積公式可得:S△FGC=S△EGC,即可求解.【詳解】解:如圖:在正方形ABCD中,AD=AB,∠D=∠B=∠C=1°,又∵△ADE沿AE對折至△AFE,延長EF交邊BC于點G∴∠AFG=∠AFE=∠D=1°,AF=AD,即有∠B=∠AFG=1°,AB=AF,AG=AG,在直角△ABG和直角△AFG中,AB=AF,AG=AG,∴△ABG≌△AFG;正確.∵AB=30,點E在邊CD上,且CD=3DE,∴DE=FE=10,CE=20,不妨設BG=FG=x,(x>0),則CG=30-x,EG=10+x,在Rt△CEG中,(10+x)2=202+(30-x)2解得x=15,于是BG=GC=15;正確.∵BG=GF=CG,∴△CFG是等腰三角形,∵BG=AB,∴∠AGB≠60°,則∠FGC≠60°,∴△CFG不是正三角形.錯誤.∵,∴,∴S△FGC=S△EGC=××20×15=1.正確.正確的結論有①②④.故答案為:①②④.【點睛】本題考查了正方形的性質(zhì),以及圖形的折疊的性質(zhì),三角形全等的證明,理解折疊的性質(zhì)是關鍵.14、【解析】

由平行四邊形的性質(zhì)可知:AD∥BC,BC=AD,所以△ADF∽△CEF,所以EF:DF=CE:AD,又CE:AD=CE:BC=1:2,問題得解.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,BC=AD,∴△ADF∽△CEF,∴EF:DF=CE:AD,∵E為BC中點,∴CE:AD=CE:BC=1:2,∴=.故答案為:.【點睛】此題考查平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),解題關鍵在于證明三角形相似15、4【解析】【分析】由已知判斷x-1>0,x-5<0,再求絕對值.【詳解】因為1<x<5,+|x-5|=|x-1|+|x-5|=x-1+5-x=4故答案為:4【點睛】本題考核知識點:二次根式化簡.解題關鍵點:求絕對值.16、.【解析】

由平行四邊形的性質(zhì)得出CD=AB=3,BC=AD=4,AB∥CD,由平行線的性質(zhì)得出∠GCE=∠B=60°,證出EF⊥DG,由含30°角的直角三角形的性質(zhì)得出CG=CE=1,求出EG=CG=,DG=CD+CG=4,由勾股定理求出DE即可.【詳解】解:∵四邊形ABCD是平行四邊形,∴CD=AB=3,BC=AD=4,AB∥CD,∴∠GCE=∠B=60°,∵E是BC的中點,∴CE=BE=2,∵EF⊥AB,∴EF⊥DG,∴∠G=90°,∴CG=CE=1,∴EG=CG=,DG=CD+CG=3+1=4,∴DE=;故答案為.【點睛】本題考查了平行四邊形的性質(zhì)、含30°角的直角三角形的性質(zhì)、勾股定理;熟練掌握平行四邊形的性質(zhì),由含30°角的直角三角形的性質(zhì)求出CG是解決問題的關鍵.17、【解析】

連接BE,先根據(jù)題意證明BE⊥BC,進而判定△CBE∽△BOD,根據(jù)相似比得出BC×OD=OB×BE的值即為|k|的值,再由三角形面積公式即可求解.【詳解】解:如圖,連接,∵等腰三角形中,,∴,∵,∴,∴,又∵,∴,即,∴,又∵,∴,∴,即,又∵雙曲線的圖象過點,∴,∴的面積為.故答案為:.【點睛】此題主要考查了反比例函數(shù)比例系數(shù)k的幾何意義,解題時注意:過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,體現(xiàn)了數(shù)形結合的思想.18、【解析】

利用三角形內(nèi)角和求出∠B的度數(shù),利用平行四邊形的性質(zhì)即可解答問題.【詳解】解:在矩形AEFG中,∠AEF=90°

∵∠AEB+∠AEF+∠CEF=180°,

∠CEF=15°

∴∠AEB=75°

∵∠BAE+∠B+∠AEB=180°

∠BAE=40°

∴∠B=65°

∵∠D=∠B

∴∠D=65°

故答案為65°【點睛】考察了平行四邊形的性質(zhì)及三角形的內(nèi)角和,掌握平行四邊形的性質(zhì)是解題的關鍵.三、解答題(共66分)19、(1)40人一分鐘內(nèi)平均每人跳繩102;;(2)6(1)班能得到學校獎勵.【解析】

(1)根據(jù)加權平均數(shù)的計算公式進行計算即可;(2)根據(jù)評分標準計算總積分,然后與1比較大?。驹斀狻拷猓海?)6(1)班40人中跳繩的平均個數(shù)為100+=102個,答:40人一分鐘內(nèi)平均每人跳繩102;(2)依題意得:(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288>1.所以6(1)班能得到學校獎勵.【點睛】本題考查了加權平均數(shù),正負數(shù)在實際生活中的應用.解題關鍵是理解“正”和“負”的相對性,確定一對具有相反意義的量.在一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.20、(1)50;條形圖見詳解;(2)0.3【解析】

(1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得本次調(diào)查的學生數(shù),計算出選擇C的學生數(shù),從而可以將統(tǒng)計圖補充完整;(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以分別求得抽取到的學生對這次“樹的暢想”的景觀設計課活動收獲度是“收獲一般”或者“沒有太大的收獲”的概率.【詳解】解:(1)由題意可得,本次調(diào)查的學生是:15÷30%=50(名),故答案為:50,選擇C的學生有:50-15-20-5=10,補全的條形統(tǒng)計圖如下圖所示;(2)由題可知:“收獲一般”或者“沒有太大的收獲”的概率為:;【點睛】本題考查概率公式、全面調(diào)查與抽樣調(diào)查、扇形統(tǒng)計圖、條形統(tǒng)計圖,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.21、(1)③④;(2)詳見解析;(3)小明的說法正確.【解析】

(1)由特殊四邊形的性質(zhì),可知菱形和正方形的對角線互相垂直;(2)首先根據(jù)三角形中位線定理和平行四邊形的判定定理證明四邊形EFGH是平行四邊形,然后再證明HG⊥HE即可;(3)由S四邊形【詳解】答:(1)③④(2)證明:∵H、G分別是AD、CD∵E、F分別是AB、CB∴HG∥EF,HG=EF.∴四邊形EFGH是平行四邊形∵E、H分別是∴EH∥BD∵四邊形ABCD是“正交四邊形”∴AC⊥BD∴HG⊥HE∴四邊形EFGH是矩形(3)答:小明的說法正確.證明:S=【點睛】此題考查中點四邊形,矩形的判定,解題關鍵在于得出HG⊥HE.22、(1),,;(2)見解析【解析】

(1)利用勾股定理即可寫出答案;(2)連接、交于點,根據(jù)矩形的性質(zhì)能證明O是AC、BD的中點,在和中利用阿波羅尼奧斯定理可以證明結論.【詳解】(1)在中,在中,∴故答案是:;;;(2)證明:連接、交于點,連接∵四邊形為矩形,∴OA=OC,OB=OD,AC=BD,由阿波羅尼奧斯定理得.【點睛】本題考查了矩形的性質(zhì)及勾股定理的運用,能充分理解題意并運用性質(zhì)定理推理論證是解題的關鍵.23、不是,理由見解析.【解析】

先根據(jù)勾股定理求出OB的長,再根據(jù)梯子的長度不變求出OD的長,根據(jù)BD=OD-OB即可得出結論.【詳解】解:如圖,設梯子下滑至CD,∵Rt△OAB中,AB=2.5m,AO=2.4m,

∴OB=m,同理,Rt△OCD中,

∵CD=2.5m,OC=2.4-0.4=2m,

∴OD=m,∴BD=OD-OB=1.5-0.7=0.8(m).

答:梯子底端B向外移了0.8米.【點睛】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.24、(1)該校購買A型號足球60個,B型號足球40個;(2)最省錢的購買方案為:A型足球90個,B型足球10個.【解析】

(1)設購買A型號足球x個,B型號足球y個,根據(jù)總價=單價×數(shù)量,結合22000元購買A,B兩種型號足球共100個,即可得出關于x,y的二元一次方程組,解之即可得出結論;

(2)設購買A型號足球m個,總費用為w元,則購買B型號足球(100-m)個,根據(jù)總價=單價×數(shù)量可得出w關于m的函數(shù)關系式,由購進A型號足球的數(shù)量不多于B型號足球數(shù)量的9倍可得出關于m的一元一次不等式,解之即可得出m的取值范圍,再利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】解:(1)設購買A型號足球x個,B型號足球y個,依題意,得解之得答:該校購買A型號足球60個,B型號足球40個;(2)設購買A型號足球m個,總費用為w元,則購買B型號足球(100-m)個,根據(jù)題意得w=200m+250(100-m)=-50m+25000又∵m≤9(100-m);∴0<m≤90或(m≤90)∵K=-50<0∴w隨m的増大而減小∴當m=90肘w最小∴最省錢的購買方案為:A型足球90個,B型足球10個.故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論