2024屆湖北省武漢市部分學校高考數(shù)學四模試卷含解析_第1頁
2024屆湖北省武漢市部分學校高考數(shù)學四模試卷含解析_第2頁
2024屆湖北省武漢市部分學校高考數(shù)學四模試卷含解析_第3頁
2024屆湖北省武漢市部分學校高考數(shù)學四模試卷含解析_第4頁
2024屆湖北省武漢市部分學校高考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省武漢市部分學校高考數(shù)學四模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.2.已知集合,,則A. B.C. D.3.若復數(shù)滿足,則()A. B. C. D.4.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現(xiàn)從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.5.若sin(α+3π2A.-12 B.-136.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.7.已知集合,集合,則()A. B. C. D.8.復數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.9.復數(shù)的虛部為()A. B. C.2 D.10.已知命題:,,則為()A., B.,C., D.,11.已知,則,不可能滿足的關系是()A. B. C. D.12.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù)為________.14.已知多項式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.15.某校為了解家長對學校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:滿意度評分分組合計高一1366420高二2655220根據評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設兩個年級家長的評價結果相互獨立,根據所給數(shù)據,以事件發(fā)生的頻率作為相應事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.16.已知向量,若向量與共線,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項和;(2)已知數(shù)列滿足:(?。θ我獾?;(ⅱ)對任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.18.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產品所用時間,對每個工人組裝一個該產品的用時作了記錄,得到大量統(tǒng)計數(shù)據.從這些統(tǒng)計數(shù)據中隨機抽取了個數(shù)據作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.(1)求這個樣本數(shù)據的中位數(shù)和眾數(shù);(2)以這個樣本數(shù)據中優(yōu)秀員工的頻率作為概率,任意調查名工人,求被調查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學期望.19.(12分)已知,.(1)解;(2)若,證明:.20.(12分)在中,角的對邊分別為,若.(1)求角的大??;(2)若,為外一點,,求四邊形面積的最大值.21.(12分)在平面直角坐標系中,點,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.22.(10分)已知函數(shù),函數(shù),其中,是的一個極值點,且.(1)討論的單調性(2)求實數(shù)和a的值(3)證明

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先通過降冪公式和輔助角法將函數(shù)轉化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.2、D【解析】

因為,,所以,,故選D.3、C【解析】

把已知等式變形,利用復數(shù)代數(shù)形式的除法運算化簡,再由復數(shù)模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法,是基礎題.4、B【解析】

利用古典概型概率計算方法分析出符合題意的基本事件個數(shù),結合組合數(shù)的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數(shù)的計算,考查學生分析問題的能力,難度較易.5、B【解析】

由三角函數(shù)的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數(shù)的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.6、D【解析】

直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.7、D【解析】

可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調性,以及并集的運算.8、C【解析】

直接利用復數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復數(shù)的除法的運算法則的應用,考查計算能力.9、D【解析】

根據復數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數(shù)的除法運算和復數(shù)的概念.10、C【解析】

根據全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.11、C【解析】

根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運算,以及基本不等式:和不等式的應用,屬于中檔題12、C【解析】

幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用復數(shù)的乘法運算求出,再利用共軛復數(shù)的概念即可求解.【詳解】由,則.故答案為:【點睛】本題考查了復數(shù)的四則運算以及共軛復數(shù)的概念,屬于基礎題.14、164【解析】

只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【點睛】本題主要考查了多項式展開中的特定項的求解,可以用賦值法也可以用二項展開的通項公式求解,屬于中檔題.15、0.42【解析】

高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點睛】本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.16、【解析】

計算得到,根據向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.【點睛】本題考查了根據向量平行求參數(shù),意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②證明見解析.【解析】

(1)由條件可得,結合等差數(shù)列的定義和通項公式、求和公式,即可得到所求;(2)①若,可令,運用已知條件和等比數(shù)列的性質,即可得到所求充要條件;②當,,,由等比數(shù)列的定義和不等式的性質,化簡變形,即可得到所求結論.【詳解】解:(1),,且為非零常數(shù),,,可得,可得數(shù)列的首項為,公差為的等差數(shù)列,可得,前項和為;(2)①若,可令,,且,即,,,,對任意的,,可得,可得,,數(shù)列是等比數(shù)列,則,,可得,,即,又,即有,即,數(shù)列是等比數(shù)列的充要條件為;②證明:對任意的,,,,,當,,,可得,即以為首項、為公比的等比數(shù)列;同理可得以為首項、為公比的等比數(shù)列;對任意的,,可得,即有,所以對,,,可得,,即且,則,可令,故數(shù)列,,,,,,,,,是以為首項,為公比的等比數(shù)列,其中.【點睛】本題考查新定義的理解和運用,考查等差數(shù)列和等比數(shù)列的定義和通項公式的運用,考查分類討論思想方法和推理、運算能力,屬于難題.18、(1)43,47;(2)分布列見解析,.【解析】

(1)根據莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據數(shù)據可得任取一名優(yōu)秀員工的概率為,故,寫出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點睛】此題考查根據莖葉圖求眾數(shù)和中位數(shù),求離散型隨機變量分布列,根據分布列求解期望,關鍵在于準確求解概率,若能準確識別二項分布對于解題能夠起到事半功倍的作用.19、(1);(2)見解析.【解析】

(1)在不等式兩邊平方化簡轉化為二次不等式,解此二次不等式即可得出結果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用絕對值三角不等式證明不等式,考查推理能力與運算求解能力,屬于中等題.20、(1)(2)【解析】

(1)根據正弦定理化簡等式可得,即;(2)根據題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題.21、(1);(2).【解析】

(1)在已知極坐標方程兩邊同時乘以ρ后,利用ρcosθ=x,ρsinθ=y(tǒng),ρ2=x2+y2可得曲線C的直角坐標方程;(2)聯(lián)立直線l的參數(shù)方程與x2=4y由韋達定理以及參數(shù)的幾何意義和弦長公式可得弦長與已知弦長相等可解得.【詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲線C的直角坐標方程為:x2=4y.(2)聯(lián)立直線l的參數(shù)方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,設A,B兩點對應的參數(shù)分別為t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題.22、(1)在區(qū)間單調遞增;(2);(3)證明見解析.【解析】

(1)求出,在定義域內,再次求導,可得在區(qū)間上恒成立,從而可得結論;(2)由,可得,由可得,聯(lián)立解方程組可得結果;(3)由(1)知在區(qū)間單調遞增,可證明,取,可得,而,利用裂項相消法,結合放縮法可得結果.【詳解】(1)由已知可得函數(shù)的定義域為,且,令,則有,由,可得,可知當x變化時,的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調遞增;(2)由已知可得函數(shù)的定義域為,且,由已知得,即,①由可得,,②聯(lián)立①②,消去a,可得,③令,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論