版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省長春市第七十二中學2023-2024學年中考數學押題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知二次函數y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結論的序號是()A.③④ B.②③ C.①④ D.①②③2.不等式組的解在數軸上表示為()A. B. C. D.3.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.4.在一次中學生田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:成績人數232341則這些運動員成績的中位數、眾數分別為A.、 B.、 C.、 D.、5.實數a,b,c在數軸上對應點的位置如圖所示,則下列結論中正確的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c6.下列命題是假命題的是()A.有一個外角是120°的等腰三角形是等邊三角形B.等邊三角形有3條對稱軸C.有兩邊和一角對應相等的兩個三角形全等D.有一邊對應相等的兩個等邊三角形全等7.計算tan30°的值等于()A.3B.33C.338.在海南建省辦經濟特區(qū)30周年之際,中央決定創(chuàng)建海南自貿區(qū)(港),引發(fā)全球高度關注.據統計,4月份互聯網信息中提及“海南”一詞的次數約48500000次,數據48500000科學記數法表示為()A.485×105B.48.5×106C.4.85×107D.0.485×1089.如圖,?ABCD的對角線AC、BD相交于點O,且AC+BD=16,CD=6,則△ABO的周長是()A.10 B.14 C.20 D.2210.若關于的方程的兩根互為倒數,則的值為()A. B.1 C.-1 D.0二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側面展開圖的面積為.12.已知方程組,則x+y的值為_______.13.分解因式:a3-12a2+36a=______.14.計算:﹣22÷(﹣)=_____.15.的相反數是______,的倒數是______.16.分解因式:x2y﹣xy2=_____.17.因式分解:x3﹣4x=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.19.(5分)如圖,已知拋物線經過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.(1)求m的值及該拋物線對應的解析式;(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;(3)點Q是平面內任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.20.(8分)先化簡,再求值÷(x﹣),其中x=.21.(10分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.22.(10分)已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數).(1)求證:方程有兩個不相等的實數根;(2)若方程的兩個實數根都是整數,求k的值.23.(12分)在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.求證:四邊形BFDE是矩形;若CF=3,BF=4,DF=5,求證:AF平分∠DAB.24.(14分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.解:①當x=1時,y=a+b+c=1,故本選項錯誤;②當x=﹣1時,圖象與x軸交點負半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項正確;③由拋物線的開口向下知a<1,∵對稱軸為1>x=﹣>1,∴2a+b<1,故本選項正確;④對稱軸為x=﹣>1,∴a、b異號,即b>1,∴abc<1,故本選項錯誤;∴正確結論的序號為②③.故選B.點評:二次函數y=ax2+bx+c系數符號的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對稱軸和a的符號確定:由對稱軸公式x=﹣b2a判斷符號;(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>1;否則c<1;(4)當x=1時,可以確定y=a+b+C的值;當x=﹣1時,可以確定y=a﹣b+c的值.2、C【解析】
先解每一個不等式,再根據結果判斷數軸表示的正確方法.【詳解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴數軸表示的正確方法為C.故選C.【點睛】考核知識點:解不等式組.3、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據勾股定理得到AF===,根據平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線4、C【解析】
根據中位數和眾數的概念進行求解.【詳解】解:將數據從小到大排列為:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80眾數為:1.75;中位數為:1.1.故選C.【點睛】本題考查1.中位數;2.眾數,理解概念是解題關鍵.5、D【解析】分析:根據圖示,可得:c<b<0<a,,據此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數軸,考查了有理數的大小比較關系,考查了不等關系與不等式.熟記有理數大小比較法則,即正數大于0,負數小于0,正數大于一切負數.6、C【解析】解:A.外角為120°,則相鄰的內角為60°,根據有一個角為60°的等腰三角形是等邊三角形可以判斷,故A選項正確;B.等邊三角形有3條對稱軸,故B選項正確;C.當兩個三角形中兩邊及一角對應相等時,其中如果角是這兩邊的夾角時,可用SAS來判定兩個三角形全等,如果角是其中一邊的對角時,則可不能判定這兩個三角形全等,故此選項錯誤;D.利用SSS.可以判定三角形全等.故D選項正確;故選C.7、C【解析】tan30°=338、C【解析】
依據科學記數法的含義即可判斷.【詳解】解:48511111=4.85×117,故本題選擇C.【點睛】把一個數M記成a×11n(1≤|a|<11,n為整數)的形式,這種記數的方法叫做科學記數法.規(guī)律:(1)當|a|≥1時,n的值為a的整數位數減1;(2)當|a|<1時,n的值是第一個不是1的數字前1的個數,包括整數位上的1.9、B【解析】
直接利用平行四邊形的性質得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長,進而得出答案.【詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長是:1.故選B.【點睛】平行四邊形的性質掌握要熟練,找到等值代換即可求解.10、C【解析】
根據已知和根與系數的關系得出k2=1,求出k的值,再根據原方程有兩個實數根,即可求出符合題意的k的值.【詳解】解:設、是的兩根,由題意得:,由根與系數的關系得:,∴k2=1,解得k=1或?1,∵方程有兩個實數根,則,當k=1時,,∴k=1不合題意,故舍去,當k=?1時,,符合題意,∴k=?1,故答案為:?1.【點睛】本題考查的是一元二次方程根與系數的關系及相反數的定義,熟知根與系數的關系是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.12、1【解析】
方程組兩方程相加即可求出x+y的值.【詳解】,①+②得:1(x+y)=9,則x+y=1.故答案為:1.【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.13、a(a-6)2【解析】
原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.14、1【解析】解:原式==1.故答案為1.15、2,【解析】試題分析:根據相反數和倒數的定義分別進行求解,﹣2的相反數是2,﹣2的倒數是.考點:倒數;相反數.16、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).17、x(x+2)(x﹣2)【解析】試題分析:首先提取公因式x,進而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用.三、解答題(共7小題,滿分69分)18、(1)(2)證明見解析;(3)1.【解析】
(1)由PD切⊙O于點C,AD與過點C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質可得到,又因為tan∠ABC=,所以可得=,進而可得到=,設PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進而可建立關于k的方程,解方程求出k的值即可求出PC的長.【詳解】(1)證明:∵PD切⊙O于點C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點睛】此題考查了和圓有關的綜合性題目,用到的知識點有:切線的性質、相似三角形的判定與性質、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質.19、(1);(2)(,1)(,1);(3)存在,,,,【解析】試題分析:(1)將x=-2代入y=-2x-1即可求得點B的坐標,根據拋物線過點A、O、B即可求出拋物線的方程.(2)根據題意,可知△ADP和△ADC的高相等,即點P縱坐標的絕對值為1,所以點P的縱坐標為,分別代入中求解,即可得到所有符合題意的點P的坐標.(3)由拋物線的解析式為,得頂點E(2,﹣1),對稱軸為x=2;點F是直線y=﹣2x﹣1與對稱軸x=2的交點,求出F(2,﹣1),DF=1.又由A(4,0),根據勾股定理得.然后分4種情況求解.點睛:(1)首先求出點B的坐標和m的值,然后利用待定系數法求出拋物線的解析式;(2)△ADP與△ADC有共同的底邊AD,因為面積相等,所以AD邊上的高相等,即為1;從而得到點P的縱坐標為1,再利用拋物線的解析式求出點P的縱坐標;(3)如解答圖所示,在點M的運動過程中,依次出現四個菱形,注意不要漏解.針對每一個菱形,分別進行計算,求出線段MF的長度,從而得到運動時間t的值.20、6【解析】【分析】括號內先通分進行分式加減運算,然后再與括號外的分式進行乘除運算,化簡后代入x的值進行計算即可得.【詳解】原式===,當x=,原式==6.【點睛】本題考查了分式的化簡求值,根據所給的式子確定運算順序、熟練應用相關的運算法則是解題的關鍵.21、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】
(1)應用待定系數法求解析式;(1)設出點T坐標,表示△TAC三邊,進行分類討論;(3)設出點P坐標,表示Q、R坐標及PQ、QR,根據以P,Q,R為頂點的三角形與△AMG全等,分類討論對應邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當TC=AC時,t1﹣t+=,解得:t1=,t1=;當TA=AC時,t1+16=,無解;當TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當點T坐標分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設P(m,),則Q(m,),∵Q、R關于x=1對稱∴R(1﹣m,),①當點P在直線l左側時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當PQ=AM且QR=GM時,無解;②當點P在直線l右側時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:y=﹣x+或y=﹣.【點睛】本題是代數幾何綜合題,考查了二次函數性質、三角形全等和等腰三角形判定,熟練掌握相關知識,應用數形結合和分類討論的數學思想進行解題是關鍵.22、(3)證明見解析(3)3或﹣3【解析】
(3)根據一元二次方程的定義得k≠2,再計算判別式得到△=(3k-3)3,然后根據非負數的性質,即k的取值得到△>2,則可根據判別式的意義得到結論;(3)根據求根公式求出方程的根,方程的兩個實數根都是整數,求出k的值.【詳解】證明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k為整數,∴(3k﹣3)3>2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園保育員實習合同
- 紡織翻新施工合同
- 新能源顧問聘用協議
- 乳膠漆施工服務協議教育機構
- 垃圾處理分包協議
- 展覽館真石漆施工合同
- 休閑運動中心施工協議
- 鐵路新建塔機租賃合同
- 嬰兒用品快遞租賃合同
- 銀行 融資合同范例
- 儀器分析題庫(含答案)
- 風電工程施工合同
- 招標法律法規(guī)匯總
- 湖北省黃岡市2022-2023學年高一上學期元月期末數學試題(原卷版)
- 2023配電網線損理論計算導則
- 審計人員保密守則
- GB/T 713.3-2023承壓設備用鋼板和鋼帶第3部分:規(guī)定低溫性能的低合金鋼
- 林西森騰礦業(yè)有限責任公司林西縣銀洞子溝鉛鋅礦2022年度礦山地質環(huán)境治理計劃書
- 招聘服務協議
- 免費下載裝修合同范本
- 《高職體育與健康》課程標準
評論
0/150
提交評論