版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年河南省安陽市成考專升本數(shù)學(xué)(理)
自考真題(含答案帶解析)
學(xué)校:班級(jí):姓名:考號(hào):
一、單選題(30題)
1.已知拋物線y2=6x的焦點(diǎn)為F,點(diǎn)A(0,-1),則直線AF的斜率為
()。
3
A.2
_3
B.2
2
C.3
2
D.3
2.在點(diǎn)x=0處的導(dǎo)數(shù)等于零的函數(shù)是()
A.A.y=sinx
B.y=x-1
C.y=ex-x
D.y=x2-x
3.在AABC中,若a+l/a=b+l/b=c+l/c,IjllJAABC必是()
A.直角三角形B.等腰三角形C.等邊三角形D.跳角三角形
4.曲線y=sin(x+2)的一條對(duì)稱軸的方程是()
X?一
A.2
B.X=7l
C.2
x~--2
D.2
(15)設(shè)&為任意角.則圖/-2?86?4》\。,0的國心意建基
5(A)Xtt(B)N(C)IliN(0)雙曲線
6.i25+i15+i40+i80=()
A.lB.-lC.-2D.2
7.命題甲:實(shí)數(shù)a,b,c成等比數(shù)列;命題乙:b2=ac,則甲是乙
()
A.A.充分條件但不是必要條件B.必要條件但不是充分條件C充分必
要條件D.不是充分條件也不是必要條件
8.設(shè)log57=m,log25=n,貝!Jlog27=()
C.m+n
D.mn
9.設(shè)集合A={刈X|S2},B={X|X>-1},則AnB=()
A.{XB.C.XD<1}E.{XF.G.XH<2}I.{J.-l<<2}K.{
10.在AABC中,若AB=3,A=45。,C=30。,則BC=()。
A.居B.2V3
C.35/2D.考
11.曲線y=x3+2x-l在點(diǎn)M(l,2)處的切線方程是()
A.A.5x-y-3=0B.x-5y-3=0C.5x+y-3=0D.x+5y-3=0
12.曲線3="十?在點(diǎn)(1,J)處的切線方程為()。
'.工一=0B.7一y=0
C.x+j=0D.z+y—2=0
一枚硬幣連續(xù)拋擲3次,至少有兩次正面向上的概率是
(A)|(B)/
、3之
(C)一(D)
13.4O
3?-2>7
不等式-的儡集為
14.4-Sx>-21
A.(-?,3)0(5,??)B.(-?o,3)U(5,
a(3,5)D.[3,5)
設(shè)a,b為實(shí)數(shù)且a>2,則下列不等式中不成立的是
(A)a6>2b(B)2a>a
(C)—<y
15.a
16.—個(gè)圓上有5個(gè)不同的點(diǎn),以這5個(gè)點(diǎn)中任意3個(gè)為頂點(diǎn)的三角形
共有()。
A.60個(gè)B.15個(gè)C.5個(gè)D.10個(gè)
17.已知角a的頂點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合始邊在X正半軸上,終邊
經(jīng)過點(diǎn)(3,—1),則sina的值是()
A.A.-1/2
亙
B.
C.l/2
百
D.、
(11)向昆。=(1,2)@=(-2,1),則a與b的夾角為
(A)30°(B)45°
18.(C)60°(D)90°
19.設(shè)0<a<b<l,則下列正確的是()
A.a4>b4
B.4a<4心
C.log46<log4a
D.loga4>logb4
(9)下列各選審中.正■的是
(A)yw*+是偶函數(shù)(B)y?x?tin*是奇函效
7n,是奇語
乙U?(C)y=1xl?ainx(D)=1+tiaxJft
21.函數(shù)i';'.,R()
A.A.為奇函數(shù)且在(-oo,0)上是減函數(shù)
B.為奇函數(shù)且在(-肛0)上是增函數(shù)
C.為偶函數(shù)且在(0,+8)上是減函數(shù)
D.為偶函數(shù)且在(0,+8)上是增函數(shù)
22.i為虛數(shù)單位,則l+i2+i3的值為()
A.A.lB,-lC.iD.-i
24.已知平面向量@={3,x),b=-(-2,5),且a,b,則2=
()
A.A.6/5B.5/6C.-5/6D.-6/5
25.已知點(diǎn)A(-5,3),B(3,1),則線段AB中點(diǎn)的坐標(biāo)為()
A.A.(4,-l)B.(-4,l)C.(-2,4)D.(-l,2)
26.由數(shù)字123,4,5組成沒有重復(fù)數(shù)學(xué)且數(shù)字1與2不相鄰的五位數(shù)有
A.36個(gè)B.72個(gè)C.120個(gè)D.96個(gè)
27.直三棱柱的每個(gè)側(cè)面的面積為5,底面積是10,全面積是()
A.15B.20C.25D.35
28.已知正方形ABCD,以A,C為焦點(diǎn),且過B點(diǎn)的橢圓的離心率為
()
A.A.?'
丘+1
B.虧
29.正三棱柱的每條棱長都是a,則經(jīng)過底面一邊和相對(duì)頂點(diǎn)的截面面
積是()
A-¥
D.77a:
30.
已知函數(shù)9=(;■)”'(-8<X<+8),則該函數(shù)
)
A.是奇函數(shù),且在(-8,0)上單調(diào)增加
B.是偶函數(shù),且在(-*0)上單調(diào)減少
C.是奇函數(shù),且在(0,+8)上單調(diào)增加
D.是偶函數(shù),且在(0,+8)上單調(diào)減少
二、填空題(20題)
3
31.已知sinx=「G,且x為第四象限角,則
sin2x=。
32.平移坐標(biāo)軸,把原點(diǎn)移到0,(-3,2)則曲線才2+6工一》+11=0,
在新坐標(biāo)系中的方程為
33.設(shè)/(7+1)=z+2石+1,則函數(shù)f(x)=
34.斜率為2,且在x軸上的截距為-3的直線的方程是____
35發(fā)數(shù)(1+『+1"1一。的實(shí)部為
已知的機(jī)變量g的分布列是
0-1012
P
3464
36.則尉,--------
37.從一批相同型號(hào)的鋼管中抽取5根,測其內(nèi)徑,得到如下樣本數(shù)據(jù)
(單位:mm):
110.8,109.4,111.2,109.5,109.1,
則該樣本的方差為mm?。
已知球的一個(gè)小圓的面枳為八球心到小國所在平面的即而為人,則這個(gè)球的
38.表面枳為.
39.
從某公司生產(chǎn)的安全帶中隨機(jī)抽取10條進(jìn)行斷力測試,測試結(jié)果(單位:kg)
如下:
3722、3872、4004、4012、3972、3778、4022、4006、3986、4026
則該樣本的樣本方差為
(精確到0.1).
40.設(shè)離散型隨機(jī)變量X的分布列為X-1012Pc2c3c4c則c=
41.設(shè)離散型隨機(jī)變量的分布列如下表,那么的期望值等于
540
€65.4
0.060.04
P0.70.10.1
42.
(工一二廠展開式中的常數(shù)項(xiàng)是.
43.已知正三棱錐的側(cè)棱長是底面邊長的2倍,則側(cè)棱與底面所成角的
余弦值等于
44.(18)向量%b互相垂直,且51=1,則。?(。+。)=:
45.
已知隨機(jī)變量看的分布列是:
012345
1
P0.10.20.3L0.2L0.1L0.1L
則E片__________
46.過點(diǎn)(2,1)且與直線y=*+1垂直的直線的方程為
47.若a=(l-t,1-t,t),b=(2,3t),則|b-a|的最小值是__________
48.
49.
已知隨機(jī)變量£的分布列為
£
01234
P-0.150.250.300.200.10
則Ef=_________________
設(shè)曲線y=3'在點(diǎn)(I,a)處的切線與直線-6=0平行,則a=
50..
三、簡答題(10題)
51.(本小題滿分12分)
橢圓2x2+y2=98內(nèi)有一點(diǎn)A(-5,0),在橢圓上求一點(diǎn)B,使|AB|最大.
(23)(本小題滿分12分)
設(shè)函數(shù)/(#)=/-2?+3.
(I)求曲線-2/+3在點(diǎn)(2,11)處的切線方程;
()求函數(shù)〃工)的單調(diào)區(qū)間.
JS9乙.H
53.
(24)(本小題滿分12分)
在△4BC中.4=45。,8=60。,=2,求△ABC的面積.(精確到0.01)
54.(本小題滿分13分)
三角形兩邊之和為10,其夾角的余弦是方程2x2-3x-2=0的根,求這個(gè)
三角形周長的最小值.
55.
(本小題滿分12分)
△A8c中,已知a'+J*=",且log??><v4+10gtsinC=-I,面積為v'3cnT.求它二
出的長和三個(gè)角的度數(shù).
56.
(本小題滿分12分)
已知數(shù)列l(wèi)a”}中.,=2,a..|="ya..
(I)求數(shù)列1明|的通項(xiàng)公式;
(H)若數(shù)列山的前"項(xiàng)的和S.=詈,求”的值?
57.
(本小題滿分12分)
已知等比數(shù)列{an}的各項(xiàng)都是正數(shù),al=2,前3項(xiàng)和為14.
⑴求{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,求數(shù)列{bn}的前20項(xiàng)的和.
58.
(本小題滿分12分)
已知橢圓的離心率為號(hào),且該橢畫與雙曲吟7'=1焦點(diǎn)相同?求橢硼標(biāo)準(zhǔn)
和法線方程.
59.(本小題滿分13分)
從地面上A點(diǎn)處測山頂?shù)难鼋菫閍,沿A至山底直線前行a米到B點(diǎn)
處,又測得山頂?shù)难鼋菫槌鹎笊礁?
60.(本小題滿分12分)
某服裝店將進(jìn)價(jià)為40元一件的襯衫,按50元一件售出時(shí),能賣出500
件,如果這種襯衫每件漲價(jià)1元,其銷售量就減少1。件,商店為了獲
得大利潤,問售價(jià)應(yīng)為多少?
四、解答題(10題)
Zsindcosd+
設(shè)函數(shù)/(。)=―r-T-.....-,0e[0,-^-]
sind+cosG2
⑴求〃豆);
(2)求久6)的最小值.
62.
已知等差數(shù)列(a?}中必=9.5+a,=0,
(I)求數(shù)列S.)的通項(xiàng)公式;
(II)當(dāng)“為何值時(shí),數(shù)列%”)的前”項(xiàng)和S.取得展火值,并求出該最大值.
63.在AABC中,已知B=75。,皿*2
(I)求cosA;
(^)若BC=3,求AB.
64.設(shè)函數(shù)f(x)是一次函數(shù),f(8)=15,且f(2),f(5),f(14)成等比數(shù)歹函
(I)求f(x);
(H)求f(l)+f(2)+…+f(50).
l-r2,V2
1/十方=1和圓〃+?占/+加
65.已知橢圓和圓,M、N為圓與坐標(biāo)
軸的交點(diǎn),求證:圓的弦MN是橢圓的切線。
66.某縣位于沙漠邊緣,到1999年底全縣綠化率已達(dá)到30%,從2000
年開始,每年出現(xiàn)這樣的局面;原有沙漠面積的16%被栽上樹改為綠
洲I,而同時(shí)原有綠地面積的4%又被侵蝕,變?yōu)樯衬?/p>
I.設(shè)全縣的面積為1,1999年底綠洲面積為al=3/10,經(jīng)過一年綠洲面
積為a2,經(jīng)過n年綠洲面積為明,求證:-=可*+25
II.問至少經(jīng)過多少年的綠化,才能使全縣的綠洲面積超過60%(年取
整數(shù))
67.(1)求曲線:y=Inx在(1,0)點(diǎn)處的切線方程;
(11)并判定在(0,+8)上的增減性.
已知橢圈的離心率為與,且該橢圜與雙曲線f寸=I焦點(diǎn)相同,求橢圓的標(biāo)準(zhǔn)
方程和準(zhǔn)線方程.
68.
69.設(shè)函數(shù)f(x)=2x3+3mx2-36x+m,且f(-l)=-36
(I)求m;
(H)求f(x)的單調(diào)區(qū)間.
70.已知橢圓的短軸長是4,中心與拋物線y2=4x的頂點(diǎn)重合,一個(gè)焦點(diǎn)
與拋物線的焦點(diǎn)重合.求:
(I)橢圓的標(biāo)準(zhǔn)方程;
(H)橢圓的準(zhǔn)線方程.
五、單選題(2題)
71在正方體ABCD—A1B1C1D1中,AC所在直線與BC1所在直線所
成角的大小是()
A.A.300B.45°C.60°D.90°
用0」,2,3這四個(gè)數(shù)字,組成的沒有重復(fù)數(shù)字的四位數(shù)共有
(A)24個(gè)(B)18個(gè)
72.(C)12個(gè)(D)10個(gè)
六、單選題(1題)
復(fù)數(shù)廣的值等于
)
(A)l(B)?
73.1*1-1(D)-i
參考答案
l.D
本題考查了拋物線的焦點(diǎn)的知識(shí)點(diǎn)。
3
拋物線:y2=6x的焦點(diǎn)為F(5,0),則直線AF的斜率為
A0-(-1)_2
2.C
選項(xiàng)A中,y'uco&z,y'lLoncosOnh
選項(xiàng)B中,>'=l,_y'|E=h
選項(xiàng)C中,y'=/—l.y'lLouy-1=0;
選項(xiàng)D中.y'=2工一】.y'|L。=0-l=-l.(答案為C)
3.C由a+l/a=b+l/b,得(a-b)+(b-a)/ab=O,貝lj(a-b)(l-l/ab尸0—>a=b或l/ab=l
4.D
y=sin(x+2)是函數(shù)y=sinx向左平移2個(gè)單位得到的,故其對(duì)稱軸也向左
平移2個(gè)單位,x=5是函數(shù)y=sinx的一個(gè)對(duì)稱軸,因此x=5-2是
y=sin(x+2)的一條對(duì)稱軸.
5.C
6.Di25+il5+i4O+i8O==i+i3+1+1=2.
7.A
由于實(shí)數(shù)&力“成等比數(shù)列。6*一,”.則甲屆乙的充分非必要條件.(若集力A)
8.D
log,7,?愕r|og?7?logj5Hm?”.(答案為D)
9.C
10.C
該小題主要考查的知識(shí)點(diǎn)為三角形的正弦定理.【考試指導(dǎo)】
由正弦定理可得:g2=_BC
11.A
由于y'=3x+2,所以曲線yP+2z-l在點(diǎn)MQ,2)處的切線的斜率是71^=5.
所求曲線的切線方程是廠2=5(工一1),即5工一廠3yo.(答案為A)
12.C
該小題主要考查的知識(shí)點(diǎn)為曲線的切線方程.【考試指導(dǎo)】
故曲線在點(diǎn)(1,一1)處的切現(xiàn)方程為y+1=-l(x-l),
即工+y=0.
13.B
14.C
14-lk>-21If<5
15.A
16.D
該小題主要考查的知識(shí)點(diǎn)為數(shù)列組合.
一UZ\*?7\
【考試指導(dǎo)】;
17.A
18.D
19.DA錯(cuò),V0<a<b<l,a4Vb錯(cuò),V4-a=l/4a,4七=1/羋,4b>4a,
4-a〉4-b.c錯(cuò),]og4x在(0,+oo)上是增函數(shù),二.log4b>log4aD對(duì),?.,Ova
<b<LlogaX為減函數(shù),對(duì)大底小.
20.B
21.C
函數(shù)lxI(x6R且廠戶0)為偶函數(shù)旦在(0.4-oo)上是M函數(shù).(售案為C)
22.D
23.D
本題屬于讀圖題型,在尋求答案時(shí),要著重討論方程的表達(dá)式。
25.D
26.B
用間接法計(jì)算,先求出不考慮約束條
件的所有排列,然后減去不符合條件的.
由1、2、3、4、5可組成Pl個(gè)五位數(shù).
1、2相鄰的有個(gè),即把1、2看成一個(gè)元素與剩
下的3、4、5共四個(gè)元素的排列,有P種.但1在
前或在后又有兩種,共2P:種.
所求排法共有P?-2E=120—2X24=120一48=72種
27.D求全面積=側(cè)面積+2底面積=5x3+10x2=35,應(yīng)選D.誤選C,錯(cuò)誤的
原因是只加了一個(gè)底面的面積.
28.C
29.B
因?yàn)锳B*=?
在aAB*C中*h)c.J(伍-(發(fā))'<
a,
所以-yAC?hM:*-^X-aXa—'^a.(答案為B)
30.D
31.
24
25
解析:本題考查了三角函數(shù)公式的知識(shí)點(diǎn)。X為第四象限角,貝(jcosx=
2
x/1-sinx=A/1—(一亙)~=—
V'5,5,故
_24
sin2x=2sinxcosx=25。
32.答案:解析:
x—x-h仔'=±+3
?即4.
1/=>-2
將此錢?+6工一)+11=0品方.使之只含有
(1+3)、(丫一2八常數(shù)三項(xiàng),
即工2+61+9-(1y—2)—9—2+11=0,
(x+3),=(>-2).
即x'l=y.
33.
工十2,工二1
祖上+1.,,時(shí)1r=,_】.椅它<1代入義工+1>?彳+2々/?▼.得
/a)-Li+2QT+i7+2":T,射r(x)=*+2
34.由題意可知,直線的斜率為2,且過點(diǎn)(-3,0).
???直線方程為y=2(x+3),即2x-y+6=0.(答案為2x-y+6=0。)
35.
36.
JI
3
37.0.7
11084109441112109.54-109I,,4*土-1菖
樣本平均值r------------------------------iiAo?敵樣本方整s1-
(HQ8TK))'+(1094_n())2+Qll2T10)2.(1O9$71O)2+(1O9IT】。)」o?
50'
38.
12x
39.
10928.8
【解析】該小題主要考查的知識(shí)點(diǎn)為方差.
【考試指導(dǎo)】
3722+3872+4004+4012+
3972+3778+4022+4006+
T_3986+4026
JL—--■~~一
10=
(3722—3940/+(3872—3940)'4----H
3940,?=(儂-3940):____________
-10=
10928.8.
40.
吉【解析】c+2c+3c+4c=10。=1,;"=卷
41.答案:5.48解析:E(^)=6*0,7+5.4*0.1+5*0.4+4*0.06+0*0.04=5.48
42.
由二項(xiàng)式定理可簿,常數(shù)項(xiàng)為CCr)'(5>=一會(huì)戰(zhàn)=一84.(答案為一84)
43.
(20)[#考答案)n
設(shè)三極錐為P-ABC,。為底面正三角形A8C的中心,則"_L面48c.z.P(:0即為例校與底
面所成珀.
設(shè)W1,則*2℃哼,所以
co*dCO嘿哈.,
【解題指要】本題考查三棱錐的知識(shí)及線面角的求法.
正三棱錐的底面為正三角形,且頂點(diǎn)在底面的射影為底面正三角形的中
心,這是解題中應(yīng)使
用的條件.
求線面角通常的方法是利用線面角的定義,求斜線和斜線在平面內(nèi)的射
影所成角的大小.
44.(18)1
45.
2.3
46-=。
47.
管【解析】fc-a=(l+*.2r-l,0).
Ik-a-y(l+r),+(2r-l),+O,
=/5-一2,+2
=/5(,一《),+9)挈.
48.
*in<45'—a>8sa+co!>(45a—a)sina=sin(45'-a+<?)=sin45'=尊(答案為專)
49.E4=0x0,15+1x0.25+2x0.30+3x0.20+4x0.10=1.85.(答
案為1.85)
50.
I解析:⑨蚊死*點(diǎn)好的切ft的■率力y'l,,2a)
51.解
設(shè)點(diǎn)8的坐標(biāo)為(4.),則
\AB\=+5)'+力’①
因?yàn)辄c(diǎn)B在幅Bl上.所以2x,J+y/=98
y」=98-2*「②
將②代入①.得
J,
Mfil=y(x,+5)+98-2x1
1
=y/~(jtj-lOxt+25)+148
=7-(x,-5)3+148
因?yàn)?3-5)?WO,
所以當(dāng)巧=5時(shí),陽_力’的值最大,
故認(rèn)81也最大
當(dāng)航=5時(shí).由②.得y產(chǎn)±4有
所以點(diǎn)8的坐標(biāo)為(5.4萬)或(5.-4萬)時(shí)1481最大
(23)解:(I)](4)=4?-4x,
52./(2)=24,
所求切線方程為y-ll=24(*-2),BP24x-y-37=0.……6分
(口)令/(了)=0.解得
X1=-1,*2=0,Xj=1.
當(dāng)X變化時(shí)/(工)/(X)的變化情況如下表:
(-00-I)
Xt-1(-1,0)0(0,1)1(1,+?)
r(x)-00-0
x?)2z32z
人工)的單調(diào)增區(qū)間為(-1.0),(1,+8),單調(diào)減區(qū)間為(-8,-1),(0,
1).……12分
(24)解:由正弦定理可知
BCAB
,則
sinAsinC
2x.i
prABxsin45°/2”6.、
BC=-:-=——-=2(A-1).
sm75。R+丘
~~4~
5△女=5xBCxABxsinB
x2(v^-1)x2x;
=3-萬
53.*1.27.
54.
設(shè)三角形三邊分別為a,6.c且。+6=10,則6=10-a.
方程-3x-2=0可化為(2x+I)(x-2)=0.所以xt=-y,x:=2.
因?yàn)椤?的夾角為",且1。0^1<€1,所以8加=-y.
由余弦定理,得
c1=a:+(10-a)1-2a(10-a)x(-
=2a'+100—20a+10a—a1=a*—10a+100
=(a-5)2+75.
因?yàn)?a?5)、0;
所以當(dāng)a-5=0.即a=5H^,c的值最小,其值為m=54.
又因?yàn)?+b=10,所以c取得最小值,a+i+e也取得最小值.
因此所求為10+58
55.
24.解因?yàn)椤?J-八吟所以小看宜=/
即cosB",而8為△46C內(nèi)角.
所以B=60°.又log,?in.4+lo^sinC=-!所以sin4-sinC=+.
則-1-[<?e(4-C)-CO#(J4+C)]
所以cos(X-C)-cosi20°=-y,HPco?(4-C)=0
所以4-C=90°或4-C=-90°.又4+C=I20°,
解得4=105。,6:=15°;或4=15°(=105°.
因?yàn)閪=2/fI?irvlsinBsinC
=2*立?亨??立=%
所以會(huì)3力5;所以R=2
所以a=2&in4=2x2xsin105°=(而+&)(cm)
b=2Rn\nB=2x2xsin600=24(cm)
c=2R?inC=2x2xsin15°=(荷
或a=(存6=28(cm)c=(%+0)(cm)
獨(dú)?=力長分別為(m樂n、(而-互)cm.它們的對(duì)角依次為:105°6)°.15。.
56.
(I)由已知得。.射。,警工上,
所以I?!故且?為首項(xiàng).?!"為公比的等比數(shù)列?
所以a.=2(").即4=占?…”6分
(11)由已知可噓=蟲隼1所以仕「=(畀,
解得n=6.……12分
57.
(1)設(shè)等比數(shù)列的公比為q.則2+2g+2/=14,
即『-6=0.
所以%=2,先=-3(舍去).
通項(xiàng)公式為a.=2\
a
(2)6,=lofoaa=log,2=”?
設(shè)%+b[+,??+/
=1+2+…+20
xyx20x(20+l)=210.
58.
由已知可得橢圓焦點(diǎn)為K(-6,0),人(6,。)?...........3分
設(shè)橢圓的標(biāo)準(zhǔn)方程為5+*=1(a>6>0),則
1=6,+5.
住喙解得{::2:…$分
所以橢圓的標(biāo)準(zhǔn)方程為。+?=1,?……9分
楠戰(zhàn)的準(zhǔn)線方程為*=±方笈……12分
59.解
設(shè)山高CD=%則RtA4Z)C中,4)=xco<a.
RtABDC中,BD=xco(3?
48=A。-HO.所以a=xcota-xco^S所以“=--------
cota-8.
答:山高為;
60.解設(shè)襯衫每件提高X元售出時(shí),利潤為Y元,此時(shí)賣出的件數(shù)為
500—10x件,獲得收入是(50+X)(500—10x)元,則利潤
Y=(50+X)(500—10x)—40(500—10x)=—f0x2+400x+5000=—10(x—
20)2+9000,所以當(dāng)X=20時(shí),利潤Y取得最大值9000元,此時(shí)售價(jià)
為50+20=70元
3
1+2sindcos^+—
解由題已知4。)=—.一上一
sin??c<w
3
(sin。?cos^)2~2
sin。+ca?6
令父:sin。+coftd,彳5
=/.君+6
由此可求得=6/(8)最小值為歷
61.
62.
CI)設(shè)等差數(shù)列{4)的公差為乩
由已知Ui+<M-0得2al+9d?0.
又巳知9=9,所以d=-2.
得數(shù)列{oj的通項(xiàng)公式為&=9-25—1),
即4=11—2/1.
(II)數(shù)列的前“項(xiàng)和S.=£(9+n2n)-T+10”=T”-5>+25.
<#
則當(dāng)“5時(shí).S.取得最大值為25?
63.
(I)由cosC=考得C=45°
故A=180°—75°-45°
=60°,
因此cosA=cos600
1
=2?
(n)由正弦定理W=綽,
sin/1sinC
Hr人口8tsmc
故AB=——f-
sinA
3*烏
叵
2
=>/6.
64.
(I)設(shè)八幻=3+6.由,⑻=15雨8a+〃=l5.①
由J(14)成等比數(shù)列?邵r5a+b)’工(20+6)(1恒+6)?
即,+2ab=0,因?yàn)閍#0,則有a+26-。.②
由①?②解得。=22=-1,所以/(x)*2>-l.
(II)/(1)+/⑵+…+/<50)—1+34…+99=粵■^■9=2500.
65.如下圖
因?yàn)镸、N為圓與坐標(biāo)軸的交點(diǎn),不妨取M、N在y、x軸的正方向,
:.M(0.y/^+b2)、N(Va2+b2.0),
由直線的截距式可知,弦MN的方程為:
在線方程與腌圓方程聯(lián)立得
42+/-Ja1+b~
E+h
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人二手房交易標(biāo)準(zhǔn)協(xié)議模板2024版版B版
- 個(gè)人彩鋼瓦安裝安全協(xié)議
- 二零二五版廢舊鋼材拆解、環(huán)保達(dá)標(biāo)與資源化利用合同樣本9篇
- 時(shí)間管理在小學(xué)生日常生活中的運(yùn)用
- 個(gè)人協(xié)議合同(2024版)
- 智能辦公技術(shù)的普及對(duì)現(xiàn)代辦公園區(qū)的改變研究報(bào)告
- 心理教育課程設(shè)計(jì)及實(shí)施技巧
- 2024童鞋電商渠道拓展與銷售合作協(xié)議3篇
- 二零二五年租賃合同(不含房屋租賃)
- 游戲化教學(xué)在科技教育中的實(shí)踐與探索
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運(yùn)輸安全保障協(xié)議版B版
- 《食品與食品》課件
- 讀書分享會(huì)《白夜行》
- 光伏工程施工組織設(shè)計(jì)
- DB4101-T 121-2024 類家庭社會(huì)工作服務(wù)規(guī)范
- 智研咨詢發(fā)布-2023年中國智能驅(qū)鳥裝置行業(yè)現(xiàn)狀、發(fā)展環(huán)境及深度分析報(bào)告
- 不抱怨的世界-讀后感課件
- 安慶時(shí)聯(lián)新材料有限責(zé)任公司10000噸年抗氧劑系列產(chǎn)品及抗紫外線吸收劑生產(chǎn)項(xiàng)目環(huán)境影響報(bào)告
- 中醫(yī)師承申請(qǐng)表
- 臨床微生物檢查課件 第2章細(xì)菌的生理
評(píng)論
0/150
提交評(píng)論