2024屆山東泰安肥城市高考數(shù)學倒計時模擬卷含解析_第1頁
2024屆山東泰安肥城市高考數(shù)學倒計時模擬卷含解析_第2頁
2024屆山東泰安肥城市高考數(shù)學倒計時模擬卷含解析_第3頁
2024屆山東泰安肥城市高考數(shù)學倒計時模擬卷含解析_第4頁
2024屆山東泰安肥城市高考數(shù)學倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東泰安肥城市高考數(shù)學倒計時模擬卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.2.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.3.若復數(shù)滿足(為虛數(shù)單位),則其共軛復數(shù)的虛部為()A. B. C. D.4.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.5.設α,β為兩個平面,則α∥β的充要條件是A.α內有無數(shù)條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面6.復數(shù)(i為虛數(shù)單位)的共軛復數(shù)是A.1+i B.1?i C.?1+i D.?1?i7.已知集合,集合,則().A. B.C. D.8.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結果是()A.1.1 B.1 C.2.9 D.2.89.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:10.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.411.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,12.已知,,,則的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.14.已知實數(shù),滿足則的取值范圍是______.15.已知非零向量,滿足,且,則與的夾角為____________.16.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,且滿足,證明:.18.(12分)我們稱n()元有序實數(shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為.(1)求和的值;(2)當n為偶數(shù)時,求,(用n表示).19.(12分)已知函數(shù).當時,求不等式的解集;,,求a的取值范圍.20.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設函數(shù),對于任意,恒成立,求的取值范圍.21.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.22.(10分)設,(1)求的單調區(qū)間;(2)設恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

構造函數(shù),,利用導數(shù)分析出這兩個函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結合函數(shù)的單調性推導出或,再利用余弦函數(shù)的單調性可得出結論.【詳解】構造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數(shù)在區(qū)間上單調遞增,函數(shù)在區(qū)間上單調遞增,則,;③若,則,則,此時,由于函數(shù)在區(qū)間上單調遞減,函數(shù)在區(qū)間上單調遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數(shù)單調性的應用,構造新函數(shù)是解本題的關鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.2、A【解析】

由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.3、D【解析】

由已知等式求出z,再由共軛復數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數(shù)=-1+,虛部為1故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算和共軛復數(shù)的基本概念,屬于基礎題.4、D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結合(如圖),由解得.在內有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.5、B【解析】

本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.6、B【解析】分析:化簡已知復數(shù)z,由共軛復數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復數(shù)為1﹣i.故選B.點睛:本題考查復數(shù)的代數(shù)形式的運算,涉及共軛復數(shù),屬基礎題.7、A【解析】

算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎題.8、C【解析】

根據程序框圖的模擬過程,寫出每執(zhí)行一次的運行結果,屬于基礎題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點睛】本題考查了循環(huán)結構的程序框圖的讀取以及運行結果,屬于基礎題.9、C【解析】

根據向量的數(shù)量積運算,由向量的關系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎題.10、B【解析】

因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!11、C【解析】

根據古典概型概率計算公式,計算出概率并求得數(shù)學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學期望的計算,屬于中檔題.12、A【解析】

根據指數(shù)函數(shù)與對數(shù)函數(shù)的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數(shù),所以所以,故選:A.【點睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調性,利用單調性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由可知R為中點,設,由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設,則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以OQ為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學生的數(shù)形結合能力和計算能力,難度較難.14、【解析】

根據約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據幾何關系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應用,由數(shù)形結合法求線性目標函數(shù)的取值范圍,屬于中檔題.15、(或寫成)【解析】

設與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點睛】本題主要考查向量的數(shù)量積運算,向量垂直轉化為數(shù)量積為0是解決本題的關鍵,意在考查學生的轉化能力,分析能力及計算能力.16、【解析】

設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數(shù)在單調遞增;令,即,解得,此函數(shù)在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、證明見解析【解析】

將化簡可得,由柯西不等式可得證明.【詳解】解:因為,,所以,又,所以,當且僅當時取等號.【點睛】本題主要考查柯西不等式的應用,相對不難,注意已知條件的化簡及柯西不等式的靈活運用.18、(1),.(2),【解析】

(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序實數(shù)對都寫出來,再做和;(2)用組合數(shù)表示和,再由公式或將組合數(shù)進行化簡,得出最終結果.【詳解】解:(1)范數(shù)為奇數(shù)的二元有序實數(shù)對有:,,,,它們的范數(shù)依次為1,1,1,1,故,.(2)當n為偶數(shù)時,在向量的n個坐標中,要使得范數(shù)為奇數(shù),則0的個數(shù)一定是奇數(shù),所以可按照含0個數(shù)為:1,3,…,進行討論:的n個坐標中含1個0,其余坐標為1或,共有個,每個的范數(shù)為;的n個坐標中含3個0,其余坐標為1或,共有個,每個的范數(shù)為;的n個坐標中含個0,其余坐標為1或,共有個,每個的范數(shù)為1;所以,.因為,①,②得,,所以.解法1:因為,所以..解法2:得,.又因為,所以.【點睛】本題考查了數(shù)列和組合,是一道較難的綜合題.19、(1);(2).【解析】

(1)當時,,①當時,,令,即,解得,②當時,,顯然成立,所以,③當時,,令,即,解得,綜上所述,不等式的解集為.(2)因為,因為,有成立,所以只需,解得,所以a的取值范圍為.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.20、(1);(2)【解析】

(1)求出,即可求出切線的點斜式方程,整理即可;(2)的取值范圍滿足,,求出,當時求出,的解,得到單調區(qū)間,極小值最小值即可.【詳解】(1)由于,此時切點坐標為所以切線方程為.(2)由已知,故.由于,故,設由于在單調遞增同時時,,時,,故存在使得且當時,當時,所以當時,當時,所以當時,取得極小值,也是最小值,故由于,所以,.【點睛】本題考查導數(shù)的幾何意義、不等式恒成立問題,應用導數(shù)求最值是解題的關鍵,考查邏輯推理、數(shù)學計算能力,屬于中檔題.21、(1)證明見解析;(2)【解析】

(1)由已知可證,即可證明結論;(2)根據已知可證平面,建立空間直角坐標系,求出坐標,進而求出平面和平面的法向量坐標,由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點,∴,∵平面且,∴平面,以為原點,分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,∴設平面的法向量為,則,∴,取,則.設平面的法向量為,則,∴,取,則.∴,設二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點,因為四邊形為平行四邊形,所以為中點,又因為四邊形為菱形,所以為中點,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點睛】本題主要考查線面平行的證明,考查空間向量法求面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論