攝像頭基于深度學(xué)習(xí)的籃球訓(xùn)練人工智能助手系統(tǒng)_第1頁
攝像頭基于深度學(xué)習(xí)的籃球訓(xùn)練人工智能助手系統(tǒng)_第2頁
攝像頭基于深度學(xué)習(xí)的籃球訓(xùn)練人工智能助手系統(tǒng)_第3頁
攝像頭基于深度學(xué)習(xí)的籃球訓(xùn)練人工智能助手系統(tǒng)_第4頁
攝像頭基于深度學(xué)習(xí)的籃球訓(xùn)練人工智能助手系統(tǒng)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

RochesterInstituteofTechnology

RITDigitalInstitutionalRepository

Theses

12-2021

Camera-baseddeeplearningAIassistantsystemforbasketballtraining

GuangkunZeng

gz4641@

Followthisandadditionalworksat:

/theses

RecommendedCitation

Zeng,Guangkun,"Camera-baseddeeplearningAIassistantsystemforbasketballtraining"(2021).Thesis.RochesterInstituteofTechnology.Accessedfrom

ThisThesisisbroughttoyouforfreeandopenaccessbytheRITLibraries.Formoreinformation,pleasecontact

repository@

.

CAMERA-BASEDDEEPLEARNINGAIASSISTANTSYSTEMFORBASKETBALLTRAINING

RIT

Camera-baseddeeplearningAIassistantsystemforbasketballtraining

By

GuangkunZeng

AThesisSubmittedinPartialFulfillmentoftheRequirementsfortheDegreeofMasterofFineArtinVisualCommunicationDesign

School/DepartmentofDesignCollegeofArtandDesignRochesterInstituteofTechnology

Rochester,NYDecember,2021

ThesisApproval

Camera-baseddeeplearningAIassistantsystemforbasketballtraining

ThesisTitle

GuangkunZeng

ThesisAuthor

Submittedinpartialfulfillmentoftherequirementsforthe

degreeofMasterofFineArts

TheSchoolofDesign|VisualCommunicationDesign

RochesterInstituteofTechnology|Rochester,NewYork

MikeStrobert ChiefThesisAdvisor

Name Title

ElectronicSignature:UseAdobeAcrobat

AssociateThesisAdvisor

Name Title

ElectronicSignature:UseAdobeAcrobat

Name(Optionalforsomeprograms)

selectaTitle

Title(Optionalforsomeprograms)

ElectronicSignature:UseAdobeAcrobat(Optionalforsomeprograms)

selectaTitle

Name(Optionalforsomeprograms) Title(Optionalforsomeprograms)

ElectronicSignature:UseAdobeAcrobat(Optionalforsomeprograms)

CAMERA-BASEDDEEPLEARNINGAIASSISTANTSYSTEMFORBASKETBALLTRAINING

Abstract

TheYOLO,aComputerVisionAlgorithms,isbroughtouttoanalyzethebasketballplayer’sstatusasadataset.Itcanrecordtheplayers’behavioronthecourtincludingdribbling,shooting,andrunning.Inthisway,theappcouldcollectthefieldgoalyoumadeandmissed.First,youshouldusethisapptorecordavideoofyourshoottraining.Afterthat,theAIwouldanalyzeandbringsouta3dvirtualdiagraminterpretyourperformance.Thisdiagramwillshowthehotzoneandcoldzoneforyourfieldgoal.Also,thetrackofyourballwillbedisplayedonthevideosothatyoucanknowiftheangleofyourshootingistoolowortoohigh.Intheend,theAI-basedonmachinelearningwillgiveoutaplanaccordingtoyourperformanceonshooting.

Asatrainingmobileapplicationsupportedbycamera-basedactionrecognition,thetargetaudienceisthebasketballamateurplayerswhodon’thavetheresourcesasproplayersdo.Thisprojectwillbedesignedasanewtrainingexperienceandwillbedeliveredasapromovideothatshowshowtousetheapplicationandalsothescenariopeopleuse.

Keywords

MR,virtualenvironment,camera-based,trainingsystem,deep-learning,machinelearning,motioncapture,AI

CriticalAnalysisandSummary

Context

Manybasketballenthusiastswanttoupgradetheirskillstoafarbetterlevel,butunfortunately,noteveryonehasthefundstohireprofessionalcoachestotrainonthebestcourt.Andwhat’smore,manyamateurplayersdonotevenknowhowtopracticeinaproperwaybecausethevideotutorialisnotasintuitiveastherealcoachorastheprofessionalhumancoachis.What’smore,itisalmostimpossibleforthebasketballplayertoquantifyhowgoodhis/hershootingis.Butpeopledoneedverygoodshootingformandtechniquetoshootconsistently.Howmightweimproveplayers’trainingexperience?

Nowadays,MR(mixedreality)haschangedourlife.ResearchbyVisualCapitalistprojectsthattheXRmarketwillbeworth$209billionby2022,markinganeight-foldincreasefrom20181.Furthermore,63%ofshareholdersinXRtechnologycompaniesbelievethetechnologywillbemainstreamby2024.Atthesametime,MixedRealityisquitewithinthemiddlebutalsothelongertermoftheentertainmentindustry.2Thistypeoftechnologycouldprovideacustomizedanduniquetrainingexperienceevencomparedtothebestcourtandtrainerscoulddo.3

TheMixedRealityisthetechnologythatcouldprovideanimmersiveexperienceanddirectdatavisualization.IproposetobringoutaMixedRealitymobileapplicationthatcangenerate3dvirtualdiagramofthebasketballcourttoassistplayerstounderstandtheirshootingperformance.Atthesametime,theappwillcollecttheplayer’sdataandmakethetrainingplanaccordingtotheAI-basedanalysissystem.

Methodology

Toimplementthissystem,multipletechnologieswillbeintegrated.TheYOLO,aComputerVisionAlgorithmswillrecognizetheballtraceandcollectdataofyourtraining.4Themotioncapturewith3Dvirtualenvironmenttechnologywillinterprettheshootinggestureandmovement.Thenthemachinelearningwillgenerateaspecifictrainingplan.

Thephaseofinterviewanduserresearchwillnotproceedbecausethisdesignputsmoreemphasisonconceptualdesign.Thisdesignfocuseson3problemsthatplayersoftenmeet.First,it’shardforamateurplayerstoquantifytheirskilllevel.Second,noteveryplayercanmakeapreciseplanasprofessional

1Emrich,T.(2020,February25).20for2020:AugmentedRealityTrendsandHowTheyMayPlayOutThisYear[Weblogpost].Retrievedfrom

/@tomemrich/20-augmented-reality-trends-to-keep-

an-eye-on-in-2020-d2b0258edbb

2Terry,Q.(2019,July23).ARiselevatingtheplayingfieldforsportsbycreatingsmartertrainingmethods.Retrievedfrom/futuresin/ar-is-elevating-the-playing-field-for-sports-by-creating-smarter-training-methods-77db01a84d64

3Lee,David."OurFirstShot(s)."Medium(blog).July17,2018./nex-team/our-first-shot-s-272c67d0349d.

4Terry,Q.(2019,July23).ARiselevatingtheplayingfieldforsportsbycreatingsmartertrainingmethods.Retrievedfrom/futuresin/ar-is-elevating-the-playing-field-for-sports-by-creating-smarter-training-methods-77db01a84d64

coachescando.Third,playersarenotsurethepracticeisexecutedperfectly.Peoplealsosometimesforgothowmanyshotsthey’vemade.

Threesolutionshavebeengivenout:First,A3ddiagramofyourplayscanhelpuserstoquantifytheirperformance.ThenAIDeeplearningcangiveyouadviceasgoodasacoachdoesorevenbetter.Finally,Asmartphonecamera-basedreal-timesystemcanrecordyourplayswithnomistakes.

Astheresultoftheproblemsolutions,HoopLabidentified3specificdesigngoalsthatareusedtoprototype:

Friendlytouse

Createanexperiencethatuserscanenjoy.Userscancustomizetheir3davatarandpickupfavoriteclothandhaircutsforit.Theavatarwillberiggedandmotioncapturedbyusersasawaytounderstandyourshootingmovement.

Easytounderstand

A360degrees3Ddiagramwillbegeneratedaccordingtotheplayrecording.Itisabletoturnyourstillcamerarecordinginto3dversionenvironment.TheAIwillcalculatethedistancebetweenobjects(player-player,shooter-hoop,defender-ball)

Convenienttorecord

Theuseronlyneedsasmartphonecameratodothebasicfunction.Usingasmartwatchtounlockadvancedfeatures.

Afterthreeroundsofprototyping,thecorrespondinginterfacelo-fiwireframesaredesigned.Basedonthoseinteractionwireframes,theoutputoftheUIvisualwireframeisfinallycompleted.ApromovideothatcombinedUIelementsandapplicationfunctionsisalsobemade.

Agamedesigntheoryisalsobroughtinforthissystem.Userscanearncoinsbyfinishingthetasks.Thentheycanusegamecoinstounlockavatarsandnewadvancedtasks.Thecirculareconomyisformedinthisprocess.

Ithinktherewillbesustainableiterationstoevaluatemyproposal.Atphaseone,whichistheinitialstateofaproduct,alargenumberofA/Btestswillbegiventotheusers.AccordingtotheA/Btestresultsthatwecollect,itcanbedecidedwhichfeatureisbetterforusers.Inphasetwo,theproductstartstooperatesmoothly,thenplentyofdatacanbeanalyzedbymachinelearning.DuetoAI,wecandecidewhatnewfeaturesthatmaysatisfyusersshouldbebuiltfurther.

Conclusion

It’sdifficulttoquantifytheexperienceofthesystem.Ifthesystemcouldpresentacustomizedtrainingplanfortheuserandcreateavirtual3denvironmentofarealcourtthattheplayerdoesn’tfeelstrangeaboutit,thisdesignwillbeasatisfiedsolution.

However,withthelimitofreal-timerendertechnologyandhardwarehashingpower,itisstillimpossibletoimplementanapplicationlikethisinamobilephone.ThisprojectisanapproachthatrepresentsonepossibilityofwhatAIalgorithmscandoforsportsgames.

AppendixA:ExpandedThesisDefensePresentation

Initialdesign

Designintension

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論