![攝像頭基于深度學習的籃球訓練人工智能助手系統(tǒng)_第1頁](http://file4.renrendoc.com/view14/M08/1D/1D/wKhkGWYm7ZSAGcFEAADO29dyQFs938.jpg)
![攝像頭基于深度學習的籃球訓練人工智能助手系統(tǒng)_第2頁](http://file4.renrendoc.com/view14/M08/1D/1D/wKhkGWYm7ZSAGcFEAADO29dyQFs9382.jpg)
![攝像頭基于深度學習的籃球訓練人工智能助手系統(tǒng)_第3頁](http://file4.renrendoc.com/view14/M08/1D/1D/wKhkGWYm7ZSAGcFEAADO29dyQFs9383.jpg)
![攝像頭基于深度學習的籃球訓練人工智能助手系統(tǒng)_第4頁](http://file4.renrendoc.com/view14/M08/1D/1D/wKhkGWYm7ZSAGcFEAADO29dyQFs9384.jpg)
![攝像頭基于深度學習的籃球訓練人工智能助手系統(tǒng)_第5頁](http://file4.renrendoc.com/view14/M08/1D/1D/wKhkGWYm7ZSAGcFEAADO29dyQFs9385.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
RochesterInstituteofTechnology
RITDigitalInstitutionalRepository
Theses
12-2021
Camera-baseddeeplearningAIassistantsystemforbasketballtraining
GuangkunZeng
gz4641@
Followthisandadditionalworksat:
/theses
RecommendedCitation
Zeng,Guangkun,"Camera-baseddeeplearningAIassistantsystemforbasketballtraining"(2021).Thesis.RochesterInstituteofTechnology.Accessedfrom
ThisThesisisbroughttoyouforfreeandopenaccessbytheRITLibraries.Formoreinformation,pleasecontact
repository@
.
CAMERA-BASEDDEEPLEARNINGAIASSISTANTSYSTEMFORBASKETBALLTRAINING
RIT
Camera-baseddeeplearningAIassistantsystemforbasketballtraining
By
GuangkunZeng
AThesisSubmittedinPartialFulfillmentoftheRequirementsfortheDegreeofMasterofFineArtinVisualCommunicationDesign
School/DepartmentofDesignCollegeofArtandDesignRochesterInstituteofTechnology
Rochester,NYDecember,2021
ThesisApproval
Camera-baseddeeplearningAIassistantsystemforbasketballtraining
ThesisTitle
GuangkunZeng
ThesisAuthor
Submittedinpartialfulfillmentoftherequirementsforthe
degreeofMasterofFineArts
TheSchoolofDesign|VisualCommunicationDesign
RochesterInstituteofTechnology|Rochester,NewYork
MikeStrobert ChiefThesisAdvisor
Name Title
ElectronicSignature:UseAdobeAcrobat
AssociateThesisAdvisor
Name Title
ElectronicSignature:UseAdobeAcrobat
Name(Optionalforsomeprograms)
selectaTitle
Title(Optionalforsomeprograms)
ElectronicSignature:UseAdobeAcrobat(Optionalforsomeprograms)
selectaTitle
Name(Optionalforsomeprograms) Title(Optionalforsomeprograms)
ElectronicSignature:UseAdobeAcrobat(Optionalforsomeprograms)
CAMERA-BASEDDEEPLEARNINGAIASSISTANTSYSTEMFORBASKETBALLTRAINING
Abstract
TheYOLO,aComputerVisionAlgorithms,isbroughtouttoanalyzethebasketballplayer’sstatusasadataset.Itcanrecordtheplayers’behavioronthecourtincludingdribbling,shooting,andrunning.Inthisway,theappcouldcollectthefieldgoalyoumadeandmissed.First,youshouldusethisapptorecordavideoofyourshoottraining.Afterthat,theAIwouldanalyzeandbringsouta3dvirtualdiagraminterpretyourperformance.Thisdiagramwillshowthehotzoneandcoldzoneforyourfieldgoal.Also,thetrackofyourballwillbedisplayedonthevideosothatyoucanknowiftheangleofyourshootingistoolowortoohigh.Intheend,theAI-basedonmachinelearningwillgiveoutaplanaccordingtoyourperformanceonshooting.
Asatrainingmobileapplicationsupportedbycamera-basedactionrecognition,thetargetaudienceisthebasketballamateurplayerswhodon’thavetheresourcesasproplayersdo.Thisprojectwillbedesignedasanewtrainingexperienceandwillbedeliveredasapromovideothatshowshowtousetheapplicationandalsothescenariopeopleuse.
Keywords
MR,virtualenvironment,camera-based,trainingsystem,deep-learning,machinelearning,motioncapture,AI
CriticalAnalysisandSummary
Context
Manybasketballenthusiastswanttoupgradetheirskillstoafarbetterlevel,butunfortunately,noteveryonehasthefundstohireprofessionalcoachestotrainonthebestcourt.Andwhat’smore,manyamateurplayersdonotevenknowhowtopracticeinaproperwaybecausethevideotutorialisnotasintuitiveastherealcoachorastheprofessionalhumancoachis.What’smore,itisalmostimpossibleforthebasketballplayertoquantifyhowgoodhis/hershootingis.Butpeopledoneedverygoodshootingformandtechniquetoshootconsistently.Howmightweimproveplayers’trainingexperience?
Nowadays,MR(mixedreality)haschangedourlife.ResearchbyVisualCapitalistprojectsthattheXRmarketwillbeworth$209billionby2022,markinganeight-foldincreasefrom20181.Furthermore,63%ofshareholdersinXRtechnologycompaniesbelievethetechnologywillbemainstreamby2024.Atthesametime,MixedRealityisquitewithinthemiddlebutalsothelongertermoftheentertainmentindustry.2Thistypeoftechnologycouldprovideacustomizedanduniquetrainingexperienceevencomparedtothebestcourtandtrainerscoulddo.3
TheMixedRealityisthetechnologythatcouldprovideanimmersiveexperienceanddirectdatavisualization.IproposetobringoutaMixedRealitymobileapplicationthatcangenerate3dvirtualdiagramofthebasketballcourttoassistplayerstounderstandtheirshootingperformance.Atthesametime,theappwillcollecttheplayer’sdataandmakethetrainingplanaccordingtotheAI-basedanalysissystem.
Methodology
Toimplementthissystem,multipletechnologieswillbeintegrated.TheYOLO,aComputerVisionAlgorithmswillrecognizetheballtraceandcollectdataofyourtraining.4Themotioncapturewith3Dvirtualenvironmenttechnologywillinterprettheshootinggestureandmovement.Thenthemachinelearningwillgenerateaspecifictrainingplan.
Thephaseofinterviewanduserresearchwillnotproceedbecausethisdesignputsmoreemphasisonconceptualdesign.Thisdesignfocuseson3problemsthatplayersoftenmeet.First,it’shardforamateurplayerstoquantifytheirskilllevel.Second,noteveryplayercanmakeapreciseplanasprofessional
1Emrich,T.(2020,February25).20for2020:AugmentedRealityTrendsandHowTheyMayPlayOutThisYear[Weblogpost].Retrievedfrom
/@tomemrich/20-augmented-reality-trends-to-keep-
an-eye-on-in-2020-d2b0258edbb
2Terry,Q.(2019,July23).ARiselevatingtheplayingfieldforsportsbycreatingsmartertrainingmethods.Retrievedfrom/futuresin/ar-is-elevating-the-playing-field-for-sports-by-creating-smarter-training-methods-77db01a84d64
3Lee,David."OurFirstShot(s)."Medium(blog).July17,2018./nex-team/our-first-shot-s-272c67d0349d.
4Terry,Q.(2019,July23).ARiselevatingtheplayingfieldforsportsbycreatingsmartertrainingmethods.Retrievedfrom/futuresin/ar-is-elevating-the-playing-field-for-sports-by-creating-smarter-training-methods-77db01a84d64
coachescando.Third,playersarenotsurethepracticeisexecutedperfectly.Peoplealsosometimesforgothowmanyshotsthey’vemade.
Threesolutionshavebeengivenout:First,A3ddiagramofyourplayscanhelpuserstoquantifytheirperformance.ThenAIDeeplearningcangiveyouadviceasgoodasacoachdoesorevenbetter.Finally,Asmartphonecamera-basedreal-timesystemcanrecordyourplayswithnomistakes.
Astheresultoftheproblemsolutions,HoopLabidentified3specificdesigngoalsthatareusedtoprototype:
Friendlytouse
Createanexperiencethatuserscanenjoy.Userscancustomizetheir3davatarandpickupfavoriteclothandhaircutsforit.Theavatarwillberiggedandmotioncapturedbyusersasawaytounderstandyourshootingmovement.
Easytounderstand
A360degrees3Ddiagramwillbegeneratedaccordingtotheplayrecording.Itisabletoturnyourstillcamerarecordinginto3dversionenvironment.TheAIwillcalculatethedistancebetweenobjects(player-player,shooter-hoop,defender-ball)
Convenienttorecord
Theuseronlyneedsasmartphonecameratodothebasicfunction.Usingasmartwatchtounlockadvancedfeatures.
Afterthreeroundsofprototyping,thecorrespondinginterfacelo-fiwireframesaredesigned.Basedonthoseinteractionwireframes,theoutputoftheUIvisualwireframeisfinallycompleted.ApromovideothatcombinedUIelementsandapplicationfunctionsisalsobemade.
Agamedesigntheoryisalsobroughtinforthissystem.Userscanearncoinsbyfinishingthetasks.Thentheycanusegamecoinstounlockavatarsandnewadvancedtasks.Thecirculareconomyisformedinthisprocess.
Ithinktherewillbesustainableiterationstoevaluatemyproposal.Atphaseone,whichistheinitialstateofaproduct,alargenumberofA/Btestswillbegiventotheusers.AccordingtotheA/Btestresultsthatwecollect,itcanbedecidedwhichfeatureisbetterforusers.Inphasetwo,theproductstartstooperatesmoothly,thenplentyofdatacanbeanalyzedbymachinelearning.DuetoAI,wecandecidewhatnewfeaturesthatmaysatisfyusersshouldbebuiltfurther.
Conclusion
It’sdifficulttoquantifytheexperienceofthesystem.Ifthesystemcouldpresentacustomizedtrainingplanfortheuserandcreateavirtual3denvironmentofarealcourtthattheplayerdoesn’tfeelstrangeaboutit,thisdesignwillbeasatisfiedsolution.
However,withthelimitofreal-timerendertechnologyandhardwarehashingpower,itisstillimpossibletoimplementanapplicationlikethisinamobilephone.ThisprojectisanapproachthatrepresentsonepossibilityofwhatAIalgorithmscandoforsportsgames.
AppendixA:ExpandedThesisDefensePresentation
Initialdesign
Designintension
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代產(chǎn)品設計中的民族圖案與色彩研究
- 現(xiàn)代紋樣設計在商業(yè)品牌推廣中的應用實踐
- 現(xiàn)代辦公環(huán)境下的AI餐廳服務應用研究
- 現(xiàn)代物流行業(yè)的服務創(chuàng)新與升級
- 現(xiàn)代辦公環(huán)境下的報告制作技巧
- 2024年五年級語文上冊 第六單元 口語交際:父母之愛說課稿 新人教版
- Module7 Unit2 This little girl can't walk(Period 1) (說課稿) -2024-2025學年外研版(三起)英語五年級上冊
- 7《什么比獵豹的速度更快》說課稿-2024-2025學年五年級上冊語文統(tǒng)編版001
- 13美麗的冬天 說課稿-2024-2025學年道德與法治一年級上冊統(tǒng)編版
- 2024-2025學年高中化學 第1章 第4節(jié) 第2課時 有機物分子式與分子結(jié)構(gòu)的確定說課稿 新人教版選修5
- 2025屆河北衡水數(shù)學高三第一學期期末統(tǒng)考試題含解析
- 2024年山東省青島市普通高中自主招生物理試卷(含解析)
- 2024信息技術(shù)數(shù)字孿生能力成熟度模型
- 交通銀行股份有限公司操作風險管理政策
- 提高數(shù)學教師命題能力培訓
- 數(shù)字證書使用承諾函
- 獵聘網(wǎng)在線人才測評題庫
- 《社區(qū)康復》課件-第八章 視力障礙患者的社區(qū)康復實踐
- 透析患者的血糖管理
- 瀝青拌合站講義課件
- 《逆向建模與產(chǎn)品創(chuàng)新設計》課程標準
評論
0/150
提交評論