版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
DeepLearningReproducibilityandExplainableAI(XAI)
ResultsofBSI'sprojectresearch
Documenthistory
Version
Date
Editor
Description
1.0
02.03.2022
Dr.Leventi-Peetz
TransferredfromLaTeX
FederalOfficeforInformationSecurityPostBox200363
D-53133Bonn
Phone:+49228999582-0
E-Mail:
anastasia-maria.leventi-peetz@bsi.bund.de
Internet:
https://www.bsi.bund.de
?FederalOfficeforInformationSecurity2022
Abstract
FederalOfficeforInformationSecurity
3
Abstract
ThenondeterminismofDeepLearning(DL)trainingalgorithmsanditsinfluenceontheexplainabilityofneuralnetwork(NN)modelsareinvestigatedinthisworkwiththehelpofimageclassificationexamples.Todiscusstheissue,twoconvolutionalneuralnetworks(CNN)havebeentrainedandtheirresultscompared.Thecomparisonservestheexplorationofthefeasibilityofcreatingdeterministic,robustDLmodelsanddeterministicexplainableartificialintelligence(XAI)inpractice.Successesandlimitationofallherecarriedouteffortsaredescribedindetail.Thesourcecodeoftheattaineddeterministicmodelshasbeenlistedinthiswork.Reproducibilityisindexedasadevelopment-phase-componentoftheModelGovernanceFramework,proposedbytheEUwithintheirexcellenceinAIapproach.Furthermore,reproducibilityisarequirementforestablishingcausalityfortheinterpretationofmodelresultsandbuildingoftrusttowardstheoverwhelmingexpansionofAIsystemsapplications.Problemsthathavetobesolvedonthewaytoreproducibilityandwaystodealwithsomeofthem,areexaminedinthiswork.
TableofContents
FederalOfficeforInformationSecurity
5
TableofContents
Documenthistory 2
Abstract 3
Introduction 6
ReproducibleMLmodels
6
Factorshinderingtrainingreproducibility
6
Organizationandaimofthiswork
7
Grad-CAMNN-Explanations 9
NetworkarchitecturesandHW
9
InceptionV3
10
Soundnessandstabilityofexplanations
11
Xception
13
InceptionV3vs.Xception
15
Self-trainedModels 18
DeterministicConvNet
18
DeterministicminiXception
21
Conclusionsandfuturework 24
References 26
Introduction
6
BundesamtfürSicherheitinderInformationstechnik
Introduction
ReproducibleMLmodels
ThereproducibilityofMLmodelsisasubjectofdebatewithmanyaspectsunderinvestigationbyresearchersandpractitionersinthefieldofAIalgorithmsandtheirapplications.Reproducibilityreferstotheabilitytoduplicatepriorresultsusingthesamemeansasusedintheoriginalwork,forexamplethesameprogramcodeandrawdata.However,MLexperienceswhatiscalledareproducibilitycrisisanditisdifficulttoreproduceimportantMLresults,somealsodescribedaskeyresults[
22
,
21
,
13
,
29
].Experiencereportsrefertomanypublicationsasbeingnotreplicable,orbeingstatisticallyinsignificant,orsufferingfromnarrativefallacy[
5
].EspeciallyDeepReinforcementLearninghasreceivedalotofattentionwithmanypapers[
5
,
27
,
25
,
14
]andblogposts[
24
]investigatingthehighvarianceofsomeresults.BecauseitisdifficulttodecidewhichMLresultsaretrustworthyandgeneralizetoreal-worldproblems,theimportanceofreproducibilityisgrowing.Acommonproblemconcerningreproducibilityiswhenthecodeisnotopen-sourced.Thereviewof400publicationsoftwotopAIconferencesinthelastyears,showedthatonly6%ofthemsharedtheusedcode,onethirdsharedthedataonwhichalgorithmsweretestedandhalfsharedpseudocode[
16
,
23
].Initiativeslikethe2019ICLRreproducibilitychallenge[
34
]andtheReproducibilityChallengeofNeurIPS2019[
38
,
35
],thatinvitemembersoftheAIcommunitytoreproducepapersacceptedattheconferenceandreportontheirfindingsviatheOpenReviewplatform(
/group?
id=NeurIPS.cc/2019/Reproducibility_Challenge
),demonstrateanincreasingintentiontomakemachinelearningtrustworthybymakingitcomputationallyreproducible[
19
].Reproducibilityisimportantformanyreasons:Forinstance,toquantifyprogressinML,ithastobecertainthatnotedmodelimprovementsoriginatefromtrueinnovationandarenotthesheerproductofuncontrolledrandomness[
5
].Alsofromthedevelopmentpointofview,adaptationsofmodelstochangingrequirementsandplatformsarehardlypossibleintheabsenceofbaselineorreferencecode,whichworksaccordingtoagreeduponexpectations.Thelattercouldgettransparentlyextendedorchangedbeforetestedtomeetnewdemands.ForMLmodels,itisthesonamedinferentialreproducibilitywhichisimportantasarequirementandstatesthatwhentheinferenceprocedureisrepeated,theresultsshouldbequalitativelysimilartothoseoftheoriginalprocedure[
13
].However,trainingreproducibilityisalsoanecessarysteptowardstheformationofasystematicframeworkforanend-to-endcomparisonofthequalityofMLmodels.ToourknowledgesuchaframeworkdoesnotyetexistanditshouldbeessentialifcriteriaandguaranteesregardingthequalityofMLmodelshavetobeprovided.Securityandsafetyconsiderationsareinevitablyinvolved:Forinstance,whenamodelexecutesapureclassificationexercise,decidingforexampleifatestimageshowsacatoradog,itisnotnecessarilycriticalwhenthemodel’sdecisionturnsouttobewrong.Ifhoweverthemodelisincorporatedintoaclinicaldecision-makingsystem,thathelpsmakepredictionsaboutpathologicconditionsonthebasisofpatients’data,orispartofanautomateddrivingsystem(ADS)whichactivelydecidesifavehiclehastoimmediatelystoporkeepspeeding,thenthedecisionhastobeverifiablycorrectandunderstandableateverystageofitsformation.TheincreasingdependencyonMLfordecisionmakingleadstoanincreasingconcernthattheintegrationofmodelswhichhavenotbeenfullyunderstoodcanleadtounintendedconsequences[
20
].
Factorshinderingtrainingreproducibility
Itiswellknownthatwhenamodelistrainedagainwiththesamedataitcanproducedifferentpredictions[
8
,
7
].Tothereasonsthatmakereproducibilitydifficulttherebelong:differentproblemformulations,missingcompatibilitybetweenDNN-architectures,missingappropriatebenchmarks,differentOS,differentnumericallibraries,systemarchitecturesorsoftwareenvironmentslikethePythonversionetc.Reproducibilityasabasisforthegenerationofsoundexplanationsandinterpretationsofmodeldecisionsisalsoessentialinviewoftheimmensecomputationaleffortandcostsinvolvedwhenapplyingoradaptingalgorithms,oftenwithoutspecificknowledgeaboutthehardware,theparameter-tuningandthe
Introduction
FederalOfficeforInformationSecurity
7
energyconsumptiondemandedforthetrainingofamodel,whichattheendmightleadtoinconclusiveresults.Furthermore,itisalsodifficulttotrainmodelstoexpectedaccuracyevenwhentheprogramcodeandthetrainingdataareavailable.ChangesinTensorFlow,inGPUdrivers,orevenslightchangesinthedatasets,canhurtaccuracyinsubtleways[
46
,
45
].Inaddition,manyMLmodelsaretrainedonrestricteddatasets,forexamplethosecontainingsensitivepatientinformation,thatcan’tbemadepubliclyavailable[
1
].Whenprivacybarriersareimportantconsiderationsfordatasharing,socalledreplicationprocesseshavetobeused,toinvestigatetheextenttowhichtheoriginalmodelgeneralizestonewcontextsandnewdatapopulations,anddecidewhethersimilarconclusionstothoseoftheoriginalmodelcanbedelivered.However,thereexistalsocertainuniquechallengeswhichMLreproducibilityposes.ThetrainingofMLmodelsmakesuseofrandomness,especiallyforDL,usuallyemployingstochasticgradientdescent,regularizationtechniquesetc.[
3
].Randomizedproceduresresultindifferentfinalvaluesforthemodelparameterseverytimethecodeisexecuted.Onecansetallpossiblerandomseeds,howeveradditionalparameters,commonlynamedsilentparameters,associatedwithmoderndeeplearning,havebeenfoundtoalsohaveaprofoundinfluenceonbothmodelperformanceandreproducibility.High-levelframeworkslikeKerasarereportedtohidelow-levelimplementationdetailsandcomewithimplicithyperparameterchoicesalreadymadefortheuser.Alsohiddenbugsinthesourcecodecanleadtodifferentoutcomesindependenceoflinkedlibrariesanddifferentexecutionenvironments.Moreover,thecosttoreproducestate-of-the-artdeeplearningmodelsisoftenextremelyhigh.Innaturallanguageprocessing(NLP),transformersrequirehugeamountsofdataandcomputationalpowerandcanhaveinexcessof100billiontrainableparameters.Largeorganizationsproducemodels(likeOpenAI’sGPT-3)whichcancostmillionsofdollarsincomputingpowertotrain[
1
,
3
,
12
].Tofindthetransformerthatachievesthebestpredictiveperformanceforagivenapplication,meta-learnerstestthousandsofpossibleconfigurations.Thecosttoreproduceoneofthemanypossibletransformermodelshasbeenestimatedtorangefrom1millionto
3.2millionUSDwithusageofpubliclyavailablecloudcomputingresources[
39
,
3
].ThisprocessisestimatedtogenerateCO2emissionswithavolumewhichamountstothefivefoldofemissionsofanaveragecar,generatedoveritsentirelifetimeontheroad.Theenvironmentalimplicationsattachedtoreproducibilityendeavorsofthisrangearedefinitelyprohibitive[
3
].Aspossiblesolutiontothisproblem,therehasbeenproposedtheoptiontoletexpensivelargemodelsgetproducedonlyonce,whileadaptationsofthesemodelsforspecialapplicationsshouldbemadetransparentandreproduciblewiththeuseofmoremodestresources[
3
].
Organizationandaimofthiswork
ThemajorityofmethodsforexplainableAIareattributebased,theyhighlightthosedatafeatures(attributes),thatmostlycontributedtothemodel’spredictionordecision.Convolutionalneuralnetworks(CNN,orConvNet)arestate-of-the-artarchitectures,forwhichvisualexplanationscanbeproduced,forexamplewiththeGradient-weightedClassActivationMappingmethod(Grad-CAM)[
37
,
11
],whichisalsothemethodusedinthiswork.Inthesecondpartofthiswork,Grad-CAMexplanationsfortwopre-trainedandestablishedCNNmodels,whichuseTensorFlow,willbediscussedwithfocusonthedifferencesoftheirresults,whenthesametest-dataaregivenasinput.Itiswellknownthatwhendifferentexplainabilitymethodsareappliedonaneuralnetwork,differentresultsaretobeexpected.Thefactthatasingleexplainabilitymethod,whenappliedontwosimilarCNN-architectures,canproducedifferentresultsforthesametest-data,hasreceivedlessattentionintheliteraturebutisworthtoanalyzeinthereproducibilitycontext.Inthethirdpart,theownimplementation,trainingandresultsoftworelativelysimpleCNNmodelsarediscussed.DifferencesoftheGrad-CAM-explanationsforidenticalimagesclassifiedwiththesetwonetworksareanalyzed,withspecialfocusontheinfluenceofthecomputinginfrastructureonthemodelexecution.TheeffortstorenderthesetwomodelsdeterministicaredescribedinSection
3
indetail,againwithspecialfocusontheinfluenceofthecomputinginfrastructureontheresults.Successandlimitationsarenoted,thepartlyachieveddeterministiccodeislisted.ItisworthmentioningthatdifferentbehaviorsacrossversionsofTensorFlow,aswellasacrossdifferentcomputationalframeworksaredocumentedtobenormallyexpected.TensorFlowwarnsthatfloatingpointvaluescomputedbyops,maychangeatanytimeandusersshouldrelyonlyonapproximateaccuracyandnumericalstability,notonthe
Introduction
8
BundesamtfürSicherheitinderInformationstechnik
specificbitscomputed.Therecouldbefoundnoexperiencereports,astohowachangeofspecificbitscouldinfluenceMLresults,forinstanceinworstcasebyalteringthenetwork’sclassificationoritsexplanation,orboth.AccordingtoTensorFlow,changestonumericalformulasinminorandpatchreleases,shouldresultincomparableorimprovedaccuracyofspecificformulas,withthecautionthatthismightdecreasetheaccuracyfortheoverallsystem.AlsomodelsimplementedinoneversionofTensorFlow,cannotrunwithnextsubversionsandversionsofTensorFlow.Thereforepublishedcodewhichwasonceprovedtowork,ispossiblynottouseagainwithinshorttimeafteritscreation.Torunmorethanonesubversionsonthesamesystem,whenusinggraphicHWsupport,wasnotpossible.ThisworkaimsatdrawingattentiontothechallengesthatadheretocreatingreproducibletrainingprocessesinDeepLearninganddemonstratespracticalstepstowardsreproducibility,discussingtheirpresentlimitations.InSection
4
conclusionsofthisworkandviewstowardsfutureinvestigationsinthesamedirectionarepresentedinasummary.Ithastobenotedthattheimpactofwhatiscalledunderspecification,wherebythesametrainingprocessesproducesmultiplemachine-learningmodelswhichdemonstratedifferencesintheirperformance,isoutofscopeofthiswork[
18
].
Grad-CAMNN-Explanations
FederalOfficeforInformationSecurity
9
Grad-CAMNN-Explanations
NetworkarchitecturesandHW
Convolutionalneuralnetworks,originallydevelopedfortheanalysisandclassificationofobjectsindigitalimages,representthecoreofmoststate-of-the-artcomputervisionsolutionsforawidevarietyoftasks[
41
].AbriefbutcomprehensivehistoryofCNNcanbefoundinmanysources,forexamplein[
9
],wherebythetendencyhasalwaysbeentowardsmakingCNNincreasinglydeeper.DevelopmentsofthelastyearshaveledtotheInceptionarchitecture,whichincorporatesthesocalledInceptionmodules,thatexistalreadyinseveraldifferentversions.Anewarchitecture,whichinsteadofstacksofsimpleconvolutionalnetworks,containsstacksofconvolutionsitself,wasproposedbyFran?oisCholletwithhisExtremeInceptionorXceptionmodel.Xceptionwasprovedtobecapableoflearningricherrepresentationswithlessparameters[
9
].CholletdeliveredtheXceptionimprovementstotheInceptionfamilyofNN-architectures,byentirelyreplacingInceptionmoduleswithdepthwiseseparableconvolutions.Xceptionalsousesresidualconnections,placedinallflowsofthenetwork[
9
,
17
].Theroleofresidualswasobservedasespeciallyimportantfortheconvergenceofthenetwork[
44
],howeverCholletmoderatesthisimportance,becausenon-residualmodelshavebeenbenchmarkedwiththesameoptimizationconfigurationastheresidualones,whichleavesthepossibilityopen,thatanotherconfigurationmighthaveprovedthenon-residualversionbetter[
9
].Finally,thebuildingoftheimprovedXceptionmodelswasmadepossiblebecauseanefficientdepthwiseconvolutionimplementationbecameavailableinTensorFlow.TheXceptionarchitecturehasasimilarnumberofparametersasInceptionV3.ItsperformancehoweverhasbeenfoundtobebetterthanthatofInception,accordingtotestsontwolarge-scaleimageclassificationtasks[
9
].Forpracticaltestsinthiswork,InceptionV3andXceptionhavebeenchosenforresultscomparisons.ThetwonetworksarepretrainedonatrimmedlistoftheImageNetdataset,soastobeabletorecognizeonethousandnon-overlappingobjectclasses[
9
].
InceptionV3
Theexactdescriptionofthenetwork,itsparametersandperformancearegivenintheworkofChristianSzegedy[
42
].Thedescriptionofthetraininginfrastructurereferstoasystemof50replicas,(probablyidenticalsystems),runningeachonaNVidiaKeplerGPU,withbatchsize32,for100epochs.Thetimedurationofeachepochisnotgiven.
Xception
Chollethasused60NVIDIAK80GPUsforthetraining,whichtookadurationof3daystime.Thenumberofepochsisnotgiven.Thenetworkandtechnicaldetailsaboutthetrainingarelistedintheoriginalwork[
9
].
Xceptionhasasimilarnumberofparameters(ca.23million)asInceptionV3(ca.24million).TheHWexecutionenvironmentsemployedfortheheredescribedexperimentsarethefollowing:
HW-1:GPU:NVIDIATITANRTX:24GB(GDDR6),576NVIDIATuringmixed-precisionTensorCores,4608CUDACores.
HW-2:CPU:AMDEPYC7502P32-Core,SMT,2GHz(T:2.55GHz),RAM128GB.
HW-3:GPU:NVIDIAGeForceRTX2060:6GB(GDDR6),240NVIDIATuringmixed-precisionTensorCores,1920CUDACores.
HW-4:CPU:AMDRyzenThreadripper3970X32-Core,SMT,3.7GHz(T:4.5GHz),RAM256GB.
HW-5:CPU:AMDRyzen75800X8-Core,SMT,3.8GHz(T:4.7GHz),RAM64GB.
EachofthepretrainedmodelsisverifiedtodeliverthesameresultsforallhereconsideredCPUorGPUdifferentexecutionenvironments.Theclassificationsandtheaccordingnetworkexplanationsaredeterministicwhenperformedunderlaboratoryconditions,asalsoexpected.Plausibilityandstabilityissuesoftheexplanationswillbementionedparalleltothetests.
Grad-CAMNN-Explanations
10
BundesamtfürSicherheitinderInformationstechnik
InceptionV3
Inthispartexamplesofpredictions,calculatedwiththeInceptionV3networkarediscussed.InFig.
1
(a)and
(b)respectively,therearedepictedactivationheatmapswhichhavebeenproducedtoidentifythoseregionsoftheimagechow-cat,thatcorrespondtothedog(“chow”)andthecat(“tabby”)respectively.IdenticalrespectiveaccuracieshavebeencalculatedforeachclassificationindependentoftheemployedHW,aswasverifiedbythetestsperformedwithallHW-environmentslistedattheendofsection
2.1
.The“chow”hasbeenpredictedwith30%probabilityandstandsinthefirstplaceonthetop-predictions-list,whilethecatgetsthethirdpositionwithaprobabilityof2.4%.
(a) (b)
Figure1:chow-cat:Grad-CAMexplanationsofInceptionV3fortheidentificationofthedog“chow”(a),inthefirstplaceonthetop-predictions-listandthecat“tabby”(b),inthethirdplaceonthetop-predictions-list.Thesecondplaceoccupiesa“Labradordog”.
InFig.
2
,heatmapsproducedbytheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b),andthe“Persiancat”(c)respectively,havebeendemonstratedfortheimagespaniel-kitty.
(a) (b) (c)
Figure2:spaniel-kitty:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),see
Table1
.
Grad-CAMNN-Explanations
Class
HW-2
HW-1
1 cockerspaniel
0.56762594
0.56761914
2 toypoodle
0.08013367
0.08014054
3 clumber
0.02106595
0.02107035
4 DandieDinmont
0.01964365
0.01964012
5 Pekinese
0.01867950
0.01868443
6 miniaturepoodle
0.01846011
0.01846663
7 Blenheimspaniel
0.01425239
0.01424699
8 Maltesedog
0.01124849
0.01124578
9 Chihuahua
0.01103328
0.01103479
10 Norwichterrier
0.00741338
0.00741514
11 Sussexspaniel
0.00703137
0.00703068
12 Yorkshireterrier
0.00689254
0.00689154
13 Norfolkterrier
0.00662250
0.00662296
14 Lhasa
0.00609926
0.00609862
15 Pomeranian
0.00608485
0.00608792
16 Persiancat
0.00489533
0.00489470
17 goldenretriever
0.00428663
0.00428840
Table1:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty,seeFig.
2
.
In
Table1
therearelistedthescoresofthefirst17classesonthetop-predictions-list,ascalculatedintwoHWexecutions(HW-1,HW-2).Thepredictionscoresarealmostidentical,asisobviousbycomparingthecolumnsin
Table1
,whileinthefewcases,whenslightdifferencesexistintheprobabilityvalues,thesedifferencesappearonlyafterthefourthdecimalplace.The“cockerspaniel”isthetoppredictionandrepresentsactuallythecorrectclassificationofthedograce,predictedwithaprobabilityofalmost57%,whilethe“Persiancat”inplace16ofthelist,whichisalsoacorrectprediction,hasaprobabilityofapproximately0.5%.The“toypoodle”with8.0%probabilitystandsinthesecondplaceonthelist,whiletherestoflistplaces,downtoplacesixteenofthe“Persiancat”,arealloccupiedbydograces(see
Table1
).
Soundnessandstabilityofexplanations
Acarefulobservationofthedeliverednetworkexplanationsshowsthattheyarepartlyarbitraryandhardlyintuitive,andthisindependentlyofawrong,orrightclassprediction.Forexample,thenetworkreasoningbehindthe“toypoodle”classificationinFig.
2
(b),whichiswrongasfarastheraceofthedogisconcerned,butrightasfarastheanimalcategoryidentified(adog),cannotbenotedassound.Themainreasonisbecausethemostactivated,andthereforethemostrelevanttothetargetidentificationregion(markedred),pointstoapartoftheimagethatliesinemptyspace,beyondthecontourofthetarget.Themarkedredregionliesclosetowhatonecoulddescribeasagenericfeature,thepaws,whichiscommontoavarietyofanimals.Atoogenericfeatureofferslittleconfidenceinbeingagoodexplanation,ifassumedthatitisonlytheaccuracyofthefeature’slocalizationintheimagethatfails.Besides,thealgorithmcouldhavefocusedonthevicinityofthepawsoutofreasonsnotdirectlyassociatedwiththerecognitionofthe“poodle”.Observingthattheexplanationfortheidentificationofthe“Persiancat”,seeFig.
2
(c),highlightsthesamepaws,makestheunambiguityordefinitenessoftheexplanationsquestionable.Importantisalsotheinvestigationofthestabilityandconsistencyofthenetwork’sexplanations,astheyrelatetothereproducibilityofthenetworktoo.Forexample,itwouldbeexpectedthatanetworkwhichconcentratedonthedog’sheadtoexplainthefirstplaceofthetop-predictions-list,the“cockerspaniel”inFig.
2
(a),wouldprobablyalsopicktheheadtomainlyidentifythesecondmostprobableclassificationonthelist,whichthe“toypoodle”,seeninFig.
2
(b).Thisishowevernotthecase,whichmakestheconsistencybehindthelogicofexplanationsdoubtful.Obviously,thecat’sheadalsoreceiveshardlyanyattentionfortheexplanationoftherecognitionofthecatinFig.
2
(c).Itisnotpossibletoidentifysomecertainstrategywhichthenetwork
FederalOfficeforInformationSecurity 11
12
BundesamtfürSicherheitinderInformationstechnik
Grad-CAMNN-Explanations
consistentlyemploysinordertoexplainclassifications,inthiscaseofanimals.Forfurtherinvestigations,asmallpartoftheimagespaniel-kitty,namelythepartcontainingthepaws,hasbeenremovedfromtheimageandthetop-predictions-listhasbeencalculatedagain.Withthenewtestimage,spaniel-kitty-paws-cutasinput,the“cockerspaniel”keepsthefirstplaceonthetop-predictions-list,see
Table2
,howeverthe“Persiancat”climbesnowfromplace16toplace2withaclassificationprobabilityrisingfrom0.5%to30%,whilethe“toypoodle”fallsdowntotheplace4ofthelist.
Class
HW-2
HW-1
1 cockerspaniel
0.43387938
0.43393657
2 Persiancat
0.03001592
0.03000891
3 Pekinese
0.02654952
0.02654130
4 toypoodle
0.01810920
0.01810851
5 DandieDinmont
0.01457902
0.01457707
6 Sussexspaniel
0.01415453
0.01415372
7 Goldenretriever
0.01363987
0.01363916
8 Miniaturepoodle
0.01088122
0.01088199
Table2:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty-paws-cut.
In
Table2
,thenewtop-fourpredictedclassesandtheirnewscoresaredisplayed.Therearenogreatchangesintheexplanationconcerningthe“cockerspaniel”forthemodifiedimage,theheadbeingtheparthighlightedagain.Howeverthevisualexplanationsfortheidentificationofthe“toypoodle”andthe“cat”havechangedconsiderably,asinFig.
3
tosee.
(a) (b) (c)
Figure3:spaniel-kitty-paws-cut:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),whenthepawsareremovedfromtheimage(compareresultsofFig.
2
).
The“toypoodle”isnowoverlayedbyadoubleheatspot,aminoroneattheendofthecat’sbodyandthemainonetotherightofthecat’shead,bothlyingoutsidethecontouroftherecognized“poodle”,seeFig.
3
(b).Althoughinthiscasetheclassificationiscorrect,theexplanationdoesn’tmakesenseatall,becausetheactivationregionliesentirelyoutsidethetarget(“toypoodle”).Onecouldarguethatatleasttheexplanationforthe“Persiancat”inFig.
3
(c)hasbeenimproved,incomparisontotheunchangedimage.Thehotactivationregionapproachesnowthecat’sheadinsteadofthepawswhichismorecharacteristicofthetarget.However,aconsiderablepartoftheclassactivationmapping(markedred),stillliesbeyondthecontourofthecatandtherefore,atleastthepositionoftherecognizedtarget,canbedescribedasnotaccurateorevenwrong.InceptionV3deliversidenticalresults,withrespecttochangingexecutionenvironments,thereforetheexplanationsandclassificationsofthenetworkareprovedtobedeterministic
FederalOfficeforInformationSecurity
13
Grad-CAMNN-Explanations
underlaboratoryconditions,thatiswhennointentionalorunintentionalperturbationsareinsertedtothetestdata.
Xception
Inanalogyto
2.2
,objectdetectionsandtheirexplanationscalculatedwiththeXceptionnetworkareherediscussed.InFig.
4
(a)and(b)therearepresentedtheactivationheatmaps,producedbythenetworkfortheidentificationoftheimageregionsthatcorrespondtothe“dog”(“chow”),andthe“cat”respectively,(hereidentifiedas“Egyptiancat”,whereasInceptionV3identifiedthecatasa“Tabbycat”,compareFig.
1
).
(a)“chow” (b)“Egyptian_cat”
Figure4:chow-cat:Grad-CAMexplanationsofXceptionfortheidentificationofthe“chow”(a),inthefirstplaceofthetop-predictions-listandthe“Egyptiancat”(b),inthesecondplace.Thirdonthelististhe“tigercat”andfourththe“tabbycat”.Foracomparison,theorderofexplanationsgeneratedbyInceptionV3isgiveninthecaptionofFig.
1
.
InFig.
5
theactivationmapscorrespondingtotheidentificationofthe“cockerspaniel”,the“Frenchbulldog”,the“toypoodle”andthe“Persiancat”respectivelyaredemonstrated.SimilarlytotheInceptionV3case,describedintheprevioussection,allpredictionscoresarealmostidenticalbetweenallHWenvironmentexecutions.
Grad-CAM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025農(nóng)村房屋建造合同協(xié)議書
- 二零二五年度可再生能源發(fā)電項目施工合同范本(完整版)3篇
- 2025年度文化信用擔(dān)保藝術(shù)品交易協(xié)議3篇
- 2024年紙板產(chǎn)品綠色包裝研發(fā)與應(yīng)用合同3篇
- 2025關(guān)于動產(chǎn)抵押借款合同范文
- 2024月餅禮盒設(shè)計及采購一體化合同范本3篇
- 2024某城市基礎(chǔ)設(shè)施建設(shè)項目外包合同
- 2025年度校車駕駛員聘用合同(含駕駛員健康管理與保障措施)3篇
- 二零二五年度供水、供電設(shè)施智能化改造合同范本3篇
- 二零二五年度體育賽事贊助合作意向協(xié)議書范本3篇
- ASTM-A269-A269M無縫和焊接奧氏體不銹鋼管
- 中、高級鉗工訓(xùn)練圖紙
- 2024-2030年中國車載動態(tài)稱重行業(yè)投融資規(guī)模與發(fā)展態(tài)勢展望研究報告
- 乒乓球教案完整版本
- 2024年重慶公交車從業(yè)資格證考試題庫
- 銀行解押合同范本
- 2024-2030年中國紋身針行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 部編版道德與法治九年級上冊每課教學(xué)反思
- 2024云南保山電力股份限公司招聘(100人)(高頻重點提升專題訓(xùn)練)共500題附帶答案詳解
- 人教版(2024)七年級上冊英語 Unit 1 You and Me 語法知識點復(fù)習(xí)提綱與學(xué)情評估測試卷匯編(含答案)
- 六年級期末家長會課件下載
評論
0/150
提交評論