




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
DeepLearningReproducibilityandExplainableAI(XAI)
ResultsofBSI'sprojectresearch
Documenthistory
Version
Date
Editor
Description
1.0
02.03.2022
Dr.Leventi-Peetz
TransferredfromLaTeX
FederalOfficeforInformationSecurityPostBox200363
D-53133Bonn
Phone:+49228999582-0
E-Mail:
anastasia-maria.leventi-peetz@bsi.bund.de
Internet:
https://www.bsi.bund.de
?FederalOfficeforInformationSecurity2022
Abstract
FederalOfficeforInformationSecurity
3
Abstract
ThenondeterminismofDeepLearning(DL)trainingalgorithmsanditsinfluenceontheexplainabilityofneuralnetwork(NN)modelsareinvestigatedinthisworkwiththehelpofimageclassificationexamples.Todiscusstheissue,twoconvolutionalneuralnetworks(CNN)havebeentrainedandtheirresultscompared.Thecomparisonservestheexplorationofthefeasibilityofcreatingdeterministic,robustDLmodelsanddeterministicexplainableartificialintelligence(XAI)inpractice.Successesandlimitationofallherecarriedouteffortsaredescribedindetail.Thesourcecodeoftheattaineddeterministicmodelshasbeenlistedinthiswork.Reproducibilityisindexedasadevelopment-phase-componentoftheModelGovernanceFramework,proposedbytheEUwithintheirexcellenceinAIapproach.Furthermore,reproducibilityisarequirementforestablishingcausalityfortheinterpretationofmodelresultsandbuildingoftrusttowardstheoverwhelmingexpansionofAIsystemsapplications.Problemsthathavetobesolvedonthewaytoreproducibilityandwaystodealwithsomeofthem,areexaminedinthiswork.
TableofContents
FederalOfficeforInformationSecurity
5
TableofContents
Documenthistory 2
Abstract 3
Introduction 6
ReproducibleMLmodels
6
Factorshinderingtrainingreproducibility
6
Organizationandaimofthiswork
7
Grad-CAMNN-Explanations 9
NetworkarchitecturesandHW
9
InceptionV3
10
Soundnessandstabilityofexplanations
11
Xception
13
InceptionV3vs.Xception
15
Self-trainedModels 18
DeterministicConvNet
18
DeterministicminiXception
21
Conclusionsandfuturework 24
References 26
Introduction
6
BundesamtfürSicherheitinderInformationstechnik
Introduction
ReproducibleMLmodels
ThereproducibilityofMLmodelsisasubjectofdebatewithmanyaspectsunderinvestigationbyresearchersandpractitionersinthefieldofAIalgorithmsandtheirapplications.Reproducibilityreferstotheabilitytoduplicatepriorresultsusingthesamemeansasusedintheoriginalwork,forexamplethesameprogramcodeandrawdata.However,MLexperienceswhatiscalledareproducibilitycrisisanditisdifficulttoreproduceimportantMLresults,somealsodescribedaskeyresults[
22
,
21
,
13
,
29
].Experiencereportsrefertomanypublicationsasbeingnotreplicable,orbeingstatisticallyinsignificant,orsufferingfromnarrativefallacy[
5
].EspeciallyDeepReinforcementLearninghasreceivedalotofattentionwithmanypapers[
5
,
27
,
25
,
14
]andblogposts[
24
]investigatingthehighvarianceofsomeresults.BecauseitisdifficulttodecidewhichMLresultsaretrustworthyandgeneralizetoreal-worldproblems,theimportanceofreproducibilityisgrowing.Acommonproblemconcerningreproducibilityiswhenthecodeisnotopen-sourced.Thereviewof400publicationsoftwotopAIconferencesinthelastyears,showedthatonly6%ofthemsharedtheusedcode,onethirdsharedthedataonwhichalgorithmsweretestedandhalfsharedpseudocode[
16
,
23
].Initiativeslikethe2019ICLRreproducibilitychallenge[
34
]andtheReproducibilityChallengeofNeurIPS2019[
38
,
35
],thatinvitemembersoftheAIcommunitytoreproducepapersacceptedattheconferenceandreportontheirfindingsviatheOpenReviewplatform(
/group?
id=NeurIPS.cc/2019/Reproducibility_Challenge
),demonstrateanincreasingintentiontomakemachinelearningtrustworthybymakingitcomputationallyreproducible[
19
].Reproducibilityisimportantformanyreasons:Forinstance,toquantifyprogressinML,ithastobecertainthatnotedmodelimprovementsoriginatefromtrueinnovationandarenotthesheerproductofuncontrolledrandomness[
5
].Alsofromthedevelopmentpointofview,adaptationsofmodelstochangingrequirementsandplatformsarehardlypossibleintheabsenceofbaselineorreferencecode,whichworksaccordingtoagreeduponexpectations.Thelattercouldgettransparentlyextendedorchangedbeforetestedtomeetnewdemands.ForMLmodels,itisthesonamedinferentialreproducibilitywhichisimportantasarequirementandstatesthatwhentheinferenceprocedureisrepeated,theresultsshouldbequalitativelysimilartothoseoftheoriginalprocedure[
13
].However,trainingreproducibilityisalsoanecessarysteptowardstheformationofasystematicframeworkforanend-to-endcomparisonofthequalityofMLmodels.ToourknowledgesuchaframeworkdoesnotyetexistanditshouldbeessentialifcriteriaandguaranteesregardingthequalityofMLmodelshavetobeprovided.Securityandsafetyconsiderationsareinevitablyinvolved:Forinstance,whenamodelexecutesapureclassificationexercise,decidingforexampleifatestimageshowsacatoradog,itisnotnecessarilycriticalwhenthemodel’sdecisionturnsouttobewrong.Ifhoweverthemodelisincorporatedintoaclinicaldecision-makingsystem,thathelpsmakepredictionsaboutpathologicconditionsonthebasisofpatients’data,orispartofanautomateddrivingsystem(ADS)whichactivelydecidesifavehiclehastoimmediatelystoporkeepspeeding,thenthedecisionhastobeverifiablycorrectandunderstandableateverystageofitsformation.TheincreasingdependencyonMLfordecisionmakingleadstoanincreasingconcernthattheintegrationofmodelswhichhavenotbeenfullyunderstoodcanleadtounintendedconsequences[
20
].
Factorshinderingtrainingreproducibility
Itiswellknownthatwhenamodelistrainedagainwiththesamedataitcanproducedifferentpredictions[
8
,
7
].Tothereasonsthatmakereproducibilitydifficulttherebelong:differentproblemformulations,missingcompatibilitybetweenDNN-architectures,missingappropriatebenchmarks,differentOS,differentnumericallibraries,systemarchitecturesorsoftwareenvironmentslikethePythonversionetc.Reproducibilityasabasisforthegenerationofsoundexplanationsandinterpretationsofmodeldecisionsisalsoessentialinviewoftheimmensecomputationaleffortandcostsinvolvedwhenapplyingoradaptingalgorithms,oftenwithoutspecificknowledgeaboutthehardware,theparameter-tuningandthe
Introduction
FederalOfficeforInformationSecurity
7
energyconsumptiondemandedforthetrainingofamodel,whichattheendmightleadtoinconclusiveresults.Furthermore,itisalsodifficulttotrainmodelstoexpectedaccuracyevenwhentheprogramcodeandthetrainingdataareavailable.ChangesinTensorFlow,inGPUdrivers,orevenslightchangesinthedatasets,canhurtaccuracyinsubtleways[
46
,
45
].Inaddition,manyMLmodelsaretrainedonrestricteddatasets,forexamplethosecontainingsensitivepatientinformation,thatcan’tbemadepubliclyavailable[
1
].Whenprivacybarriersareimportantconsiderationsfordatasharing,socalledreplicationprocesseshavetobeused,toinvestigatetheextenttowhichtheoriginalmodelgeneralizestonewcontextsandnewdatapopulations,anddecidewhethersimilarconclusionstothoseoftheoriginalmodelcanbedelivered.However,thereexistalsocertainuniquechallengeswhichMLreproducibilityposes.ThetrainingofMLmodelsmakesuseofrandomness,especiallyforDL,usuallyemployingstochasticgradientdescent,regularizationtechniquesetc.[
3
].Randomizedproceduresresultindifferentfinalvaluesforthemodelparameterseverytimethecodeisexecuted.Onecansetallpossiblerandomseeds,howeveradditionalparameters,commonlynamedsilentparameters,associatedwithmoderndeeplearning,havebeenfoundtoalsohaveaprofoundinfluenceonbothmodelperformanceandreproducibility.High-levelframeworkslikeKerasarereportedtohidelow-levelimplementationdetailsandcomewithimplicithyperparameterchoicesalreadymadefortheuser.Alsohiddenbugsinthesourcecodecanleadtodifferentoutcomesindependenceoflinkedlibrariesanddifferentexecutionenvironments.Moreover,thecosttoreproducestate-of-the-artdeeplearningmodelsisoftenextremelyhigh.Innaturallanguageprocessing(NLP),transformersrequirehugeamountsofdataandcomputationalpowerandcanhaveinexcessof100billiontrainableparameters.Largeorganizationsproducemodels(likeOpenAI’sGPT-3)whichcancostmillionsofdollarsincomputingpowertotrain[
1
,
3
,
12
].Tofindthetransformerthatachievesthebestpredictiveperformanceforagivenapplication,meta-learnerstestthousandsofpossibleconfigurations.Thecosttoreproduceoneofthemanypossibletransformermodelshasbeenestimatedtorangefrom1millionto
3.2millionUSDwithusageofpubliclyavailablecloudcomputingresources[
39
,
3
].ThisprocessisestimatedtogenerateCO2emissionswithavolumewhichamountstothefivefoldofemissionsofanaveragecar,generatedoveritsentirelifetimeontheroad.Theenvironmentalimplicationsattachedtoreproducibilityendeavorsofthisrangearedefinitelyprohibitive[
3
].Aspossiblesolutiontothisproblem,therehasbeenproposedtheoptiontoletexpensivelargemodelsgetproducedonlyonce,whileadaptationsofthesemodelsforspecialapplicationsshouldbemadetransparentandreproduciblewiththeuseofmoremodestresources[
3
].
Organizationandaimofthiswork
ThemajorityofmethodsforexplainableAIareattributebased,theyhighlightthosedatafeatures(attributes),thatmostlycontributedtothemodel’spredictionordecision.Convolutionalneuralnetworks(CNN,orConvNet)arestate-of-the-artarchitectures,forwhichvisualexplanationscanbeproduced,forexamplewiththeGradient-weightedClassActivationMappingmethod(Grad-CAM)[
37
,
11
],whichisalsothemethodusedinthiswork.Inthesecondpartofthiswork,Grad-CAMexplanationsfortwopre-trainedandestablishedCNNmodels,whichuseTensorFlow,willbediscussedwithfocusonthedifferencesoftheirresults,whenthesametest-dataaregivenasinput.Itiswellknownthatwhendifferentexplainabilitymethodsareappliedonaneuralnetwork,differentresultsaretobeexpected.Thefactthatasingleexplainabilitymethod,whenappliedontwosimilarCNN-architectures,canproducedifferentresultsforthesametest-data,hasreceivedlessattentionintheliteraturebutisworthtoanalyzeinthereproducibilitycontext.Inthethirdpart,theownimplementation,trainingandresultsoftworelativelysimpleCNNmodelsarediscussed.DifferencesoftheGrad-CAM-explanationsforidenticalimagesclassifiedwiththesetwonetworksareanalyzed,withspecialfocusontheinfluenceofthecomputinginfrastructureonthemodelexecution.TheeffortstorenderthesetwomodelsdeterministicaredescribedinSection
3
indetail,againwithspecialfocusontheinfluenceofthecomputinginfrastructureontheresults.Successandlimitationsarenoted,thepartlyachieveddeterministiccodeislisted.ItisworthmentioningthatdifferentbehaviorsacrossversionsofTensorFlow,aswellasacrossdifferentcomputationalframeworksaredocumentedtobenormallyexpected.TensorFlowwarnsthatfloatingpointvaluescomputedbyops,maychangeatanytimeandusersshouldrelyonlyonapproximateaccuracyandnumericalstability,notonthe
Introduction
8
BundesamtfürSicherheitinderInformationstechnik
specificbitscomputed.Therecouldbefoundnoexperiencereports,astohowachangeofspecificbitscouldinfluenceMLresults,forinstanceinworstcasebyalteringthenetwork’sclassificationoritsexplanation,orboth.AccordingtoTensorFlow,changestonumericalformulasinminorandpatchreleases,shouldresultincomparableorimprovedaccuracyofspecificformulas,withthecautionthatthismightdecreasetheaccuracyfortheoverallsystem.AlsomodelsimplementedinoneversionofTensorFlow,cannotrunwithnextsubversionsandversionsofTensorFlow.Thereforepublishedcodewhichwasonceprovedtowork,ispossiblynottouseagainwithinshorttimeafteritscreation.Torunmorethanonesubversionsonthesamesystem,whenusinggraphicHWsupport,wasnotpossible.ThisworkaimsatdrawingattentiontothechallengesthatadheretocreatingreproducibletrainingprocessesinDeepLearninganddemonstratespracticalstepstowardsreproducibility,discussingtheirpresentlimitations.InSection
4
conclusionsofthisworkandviewstowardsfutureinvestigationsinthesamedirectionarepresentedinasummary.Ithastobenotedthattheimpactofwhatiscalledunderspecification,wherebythesametrainingprocessesproducesmultiplemachine-learningmodelswhichdemonstratedifferencesintheirperformance,isoutofscopeofthiswork[
18
].
Grad-CAMNN-Explanations
FederalOfficeforInformationSecurity
9
Grad-CAMNN-Explanations
NetworkarchitecturesandHW
Convolutionalneuralnetworks,originallydevelopedfortheanalysisandclassificationofobjectsindigitalimages,representthecoreofmoststate-of-the-artcomputervisionsolutionsforawidevarietyoftasks[
41
].AbriefbutcomprehensivehistoryofCNNcanbefoundinmanysources,forexamplein[
9
],wherebythetendencyhasalwaysbeentowardsmakingCNNincreasinglydeeper.DevelopmentsofthelastyearshaveledtotheInceptionarchitecture,whichincorporatesthesocalledInceptionmodules,thatexistalreadyinseveraldifferentversions.Anewarchitecture,whichinsteadofstacksofsimpleconvolutionalnetworks,containsstacksofconvolutionsitself,wasproposedbyFran?oisCholletwithhisExtremeInceptionorXceptionmodel.Xceptionwasprovedtobecapableoflearningricherrepresentationswithlessparameters[
9
].CholletdeliveredtheXceptionimprovementstotheInceptionfamilyofNN-architectures,byentirelyreplacingInceptionmoduleswithdepthwiseseparableconvolutions.Xceptionalsousesresidualconnections,placedinallflowsofthenetwork[
9
,
17
].Theroleofresidualswasobservedasespeciallyimportantfortheconvergenceofthenetwork[
44
],howeverCholletmoderatesthisimportance,becausenon-residualmodelshavebeenbenchmarkedwiththesameoptimizationconfigurationastheresidualones,whichleavesthepossibilityopen,thatanotherconfigurationmighthaveprovedthenon-residualversionbetter[
9
].Finally,thebuildingoftheimprovedXceptionmodelswasmadepossiblebecauseanefficientdepthwiseconvolutionimplementationbecameavailableinTensorFlow.TheXceptionarchitecturehasasimilarnumberofparametersasInceptionV3.ItsperformancehoweverhasbeenfoundtobebetterthanthatofInception,accordingtotestsontwolarge-scaleimageclassificationtasks[
9
].Forpracticaltestsinthiswork,InceptionV3andXceptionhavebeenchosenforresultscomparisons.ThetwonetworksarepretrainedonatrimmedlistoftheImageNetdataset,soastobeabletorecognizeonethousandnon-overlappingobjectclasses[
9
].
InceptionV3
Theexactdescriptionofthenetwork,itsparametersandperformancearegivenintheworkofChristianSzegedy[
42
].Thedescriptionofthetraininginfrastructurereferstoasystemof50replicas,(probablyidenticalsystems),runningeachonaNVidiaKeplerGPU,withbatchsize32,for100epochs.Thetimedurationofeachepochisnotgiven.
Xception
Chollethasused60NVIDIAK80GPUsforthetraining,whichtookadurationof3daystime.Thenumberofepochsisnotgiven.Thenetworkandtechnicaldetailsaboutthetrainingarelistedintheoriginalwork[
9
].
Xceptionhasasimilarnumberofparameters(ca.23million)asInceptionV3(ca.24million).TheHWexecutionenvironmentsemployedfortheheredescribedexperimentsarethefollowing:
HW-1:GPU:NVIDIATITANRTX:24GB(GDDR6),576NVIDIATuringmixed-precisionTensorCores,4608CUDACores.
HW-2:CPU:AMDEPYC7502P32-Core,SMT,2GHz(T:2.55GHz),RAM128GB.
HW-3:GPU:NVIDIAGeForceRTX2060:6GB(GDDR6),240NVIDIATuringmixed-precisionTensorCores,1920CUDACores.
HW-4:CPU:AMDRyzenThreadripper3970X32-Core,SMT,3.7GHz(T:4.5GHz),RAM256GB.
HW-5:CPU:AMDRyzen75800X8-Core,SMT,3.8GHz(T:4.7GHz),RAM64GB.
EachofthepretrainedmodelsisverifiedtodeliverthesameresultsforallhereconsideredCPUorGPUdifferentexecutionenvironments.Theclassificationsandtheaccordingnetworkexplanationsaredeterministicwhenperformedunderlaboratoryconditions,asalsoexpected.Plausibilityandstabilityissuesoftheexplanationswillbementionedparalleltothetests.
Grad-CAMNN-Explanations
10
BundesamtfürSicherheitinderInformationstechnik
InceptionV3
Inthispartexamplesofpredictions,calculatedwiththeInceptionV3networkarediscussed.InFig.
1
(a)and
(b)respectively,therearedepictedactivationheatmapswhichhavebeenproducedtoidentifythoseregionsoftheimagechow-cat,thatcorrespondtothedog(“chow”)andthecat(“tabby”)respectively.IdenticalrespectiveaccuracieshavebeencalculatedforeachclassificationindependentoftheemployedHW,aswasverifiedbythetestsperformedwithallHW-environmentslistedattheendofsection
2.1
.The“chow”hasbeenpredictedwith30%probabilityandstandsinthefirstplaceonthetop-predictions-list,whilethecatgetsthethirdpositionwithaprobabilityof2.4%.
(a) (b)
Figure1:chow-cat:Grad-CAMexplanationsofInceptionV3fortheidentificationofthedog“chow”(a),inthefirstplaceonthetop-predictions-listandthecat“tabby”(b),inthethirdplaceonthetop-predictions-list.Thesecondplaceoccupiesa“Labradordog”.
InFig.
2
,heatmapsproducedbytheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b),andthe“Persiancat”(c)respectively,havebeendemonstratedfortheimagespaniel-kitty.
(a) (b) (c)
Figure2:spaniel-kitty:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),see
Table1
.
Grad-CAMNN-Explanations
Class
HW-2
HW-1
1 cockerspaniel
0.56762594
0.56761914
2 toypoodle
0.08013367
0.08014054
3 clumber
0.02106595
0.02107035
4 DandieDinmont
0.01964365
0.01964012
5 Pekinese
0.01867950
0.01868443
6 miniaturepoodle
0.01846011
0.01846663
7 Blenheimspaniel
0.01425239
0.01424699
8 Maltesedog
0.01124849
0.01124578
9 Chihuahua
0.01103328
0.01103479
10 Norwichterrier
0.00741338
0.00741514
11 Sussexspaniel
0.00703137
0.00703068
12 Yorkshireterrier
0.00689254
0.00689154
13 Norfolkterrier
0.00662250
0.00662296
14 Lhasa
0.00609926
0.00609862
15 Pomeranian
0.00608485
0.00608792
16 Persiancat
0.00489533
0.00489470
17 goldenretriever
0.00428663
0.00428840
Table1:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty,seeFig.
2
.
In
Table1
therearelistedthescoresofthefirst17classesonthetop-predictions-list,ascalculatedintwoHWexecutions(HW-1,HW-2).Thepredictionscoresarealmostidentical,asisobviousbycomparingthecolumnsin
Table1
,whileinthefewcases,whenslightdifferencesexistintheprobabilityvalues,thesedifferencesappearonlyafterthefourthdecimalplace.The“cockerspaniel”isthetoppredictionandrepresentsactuallythecorrectclassificationofthedograce,predictedwithaprobabilityofalmost57%,whilethe“Persiancat”inplace16ofthelist,whichisalsoacorrectprediction,hasaprobabilityofapproximately0.5%.The“toypoodle”with8.0%probabilitystandsinthesecondplaceonthelist,whiletherestoflistplaces,downtoplacesixteenofthe“Persiancat”,arealloccupiedbydograces(see
Table1
).
Soundnessandstabilityofexplanations
Acarefulobservationofthedeliverednetworkexplanationsshowsthattheyarepartlyarbitraryandhardlyintuitive,andthisindependentlyofawrong,orrightclassprediction.Forexample,thenetworkreasoningbehindthe“toypoodle”classificationinFig.
2
(b),whichiswrongasfarastheraceofthedogisconcerned,butrightasfarastheanimalcategoryidentified(adog),cannotbenotedassound.Themainreasonisbecausethemostactivated,andthereforethemostrelevanttothetargetidentificationregion(markedred),pointstoapartoftheimagethatliesinemptyspace,beyondthecontourofthetarget.Themarkedredregionliesclosetowhatonecoulddescribeasagenericfeature,thepaws,whichiscommontoavarietyofanimals.Atoogenericfeatureofferslittleconfidenceinbeingagoodexplanation,ifassumedthatitisonlytheaccuracyofthefeature’slocalizationintheimagethatfails.Besides,thealgorithmcouldhavefocusedonthevicinityofthepawsoutofreasonsnotdirectlyassociatedwiththerecognitionofthe“poodle”.Observingthattheexplanationfortheidentificationofthe“Persiancat”,seeFig.
2
(c),highlightsthesamepaws,makestheunambiguityordefinitenessoftheexplanationsquestionable.Importantisalsotheinvestigationofthestabilityandconsistencyofthenetwork’sexplanations,astheyrelatetothereproducibilityofthenetworktoo.Forexample,itwouldbeexpectedthatanetworkwhichconcentratedonthedog’sheadtoexplainthefirstplaceofthetop-predictions-list,the“cockerspaniel”inFig.
2
(a),wouldprobablyalsopicktheheadtomainlyidentifythesecondmostprobableclassificationonthelist,whichthe“toypoodle”,seeninFig.
2
(b).Thisishowevernotthecase,whichmakestheconsistencybehindthelogicofexplanationsdoubtful.Obviously,thecat’sheadalsoreceiveshardlyanyattentionfortheexplanationoftherecognitionofthecatinFig.
2
(c).Itisnotpossibletoidentifysomecertainstrategywhichthenetwork
FederalOfficeforInformationSecurity 11
12
BundesamtfürSicherheitinderInformationstechnik
Grad-CAMNN-Explanations
consistentlyemploysinordertoexplainclassifications,inthiscaseofanimals.Forfurtherinvestigations,asmallpartoftheimagespaniel-kitty,namelythepartcontainingthepaws,hasbeenremovedfromtheimageandthetop-predictions-listhasbeencalculatedagain.Withthenewtestimage,spaniel-kitty-paws-cutasinput,the“cockerspaniel”keepsthefirstplaceonthetop-predictions-list,see
Table2
,howeverthe“Persiancat”climbesnowfromplace16toplace2withaclassificationprobabilityrisingfrom0.5%to30%,whilethe“toypoodle”fallsdowntotheplace4ofthelist.
Class
HW-2
HW-1
1 cockerspaniel
0.43387938
0.43393657
2 Persiancat
0.03001592
0.03000891
3 Pekinese
0.02654952
0.02654130
4 toypoodle
0.01810920
0.01810851
5 DandieDinmont
0.01457902
0.01457707
6 Sussexspaniel
0.01415453
0.01415372
7 Goldenretriever
0.01363987
0.01363916
8 Miniaturepoodle
0.01088122
0.01088199
Table2:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty-paws-cut.
In
Table2
,thenewtop-fourpredictedclassesandtheirnewscoresaredisplayed.Therearenogreatchangesintheexplanationconcerningthe“cockerspaniel”forthemodifiedimage,theheadbeingtheparthighlightedagain.Howeverthevisualexplanationsfortheidentificationofthe“toypoodle”andthe“cat”havechangedconsiderably,asinFig.
3
tosee.
(a) (b) (c)
Figure3:spaniel-kitty-paws-cut:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),whenthepawsareremovedfromtheimage(compareresultsofFig.
2
).
The“toypoodle”isnowoverlayedbyadoubleheatspot,aminoroneattheendofthecat’sbodyandthemainonetotherightofthecat’shead,bothlyingoutsidethecontouroftherecognized“poodle”,seeFig.
3
(b).Althoughinthiscasetheclassificationiscorrect,theexplanationdoesn’tmakesenseatall,becausetheactivationregionliesentirelyoutsidethetarget(“toypoodle”).Onecouldarguethatatleasttheexplanationforthe“Persiancat”inFig.
3
(c)hasbeenimproved,incomparisontotheunchangedimage.Thehotactivationregionapproachesnowthecat’sheadinsteadofthepawswhichismorecharacteristicofthetarget.However,aconsiderablepartoftheclassactivationmapping(markedred),stillliesbeyondthecontourofthecatandtherefore,atleastthepositionoftherecognizedtarget,canbedescribedasnotaccurateorevenwrong.InceptionV3deliversidenticalresults,withrespecttochangingexecutionenvironments,thereforetheexplanationsandclassificationsofthenetworkareprovedtobedeterministic
FederalOfficeforInformationSecurity
13
Grad-CAMNN-Explanations
underlaboratoryconditions,thatiswhennointentionalorunintentionalperturbationsareinsertedtothetestdata.
Xception
Inanalogyto
2.2
,objectdetectionsandtheirexplanationscalculatedwiththeXceptionnetworkareherediscussed.InFig.
4
(a)and(b)therearepresentedtheactivationheatmaps,producedbythenetworkfortheidentificationoftheimageregionsthatcorrespondtothe“dog”(“chow”),andthe“cat”respectively,(hereidentifiedas“Egyptiancat”,whereasInceptionV3identifiedthecatasa“Tabbycat”,compareFig.
1
).
(a)“chow” (b)“Egyptian_cat”
Figure4:chow-cat:Grad-CAMexplanationsofXceptionfortheidentificationofthe“chow”(a),inthefirstplaceofthetop-predictions-listandthe“Egyptiancat”(b),inthesecondplace.Thirdonthelististhe“tigercat”andfourththe“tabbycat”.Foracomparison,theorderofexplanationsgeneratedbyInceptionV3isgiveninthecaptionofFig.
1
.
InFig.
5
theactivationmapscorrespondingtotheidentificationofthe“cockerspaniel”,the“Frenchbulldog”,the“toypoodle”andthe“Persiancat”respectivelyaredemonstrated.SimilarlytotheInceptionV3case,describedintheprevioussection,allpredictionscoresarealmostidenticalbetweenallHWenvironmentexecutions.
Grad-CAM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南省周口市項城市2024-2025學年高三下學期高考模擬一(開學診斷考試)數(shù)學試題(原卷版+解析版)
- 江蘇省蘇州市蘇州工業(yè)園區(qū)星灣學校2024-2025學年下學期3月月考八年級數(shù)學試題(原卷版+解析版)
- 四川省資陽市安岳中學2025屆高三下學期二模數(shù)學試題(原卷版+解析版)
- 《鄉(xiāng)土中國》導讀
- 2025年風力提水機組項目合作計劃書
- 三方駕駛培訓合作協(xié)議
- 售后變更通知函
- 長沙報關(guān)委托協(xié)議
- 汽車租賃合同范本大全
- 鋼筋運輸應急預案協(xié)議
- 中國國際航空內(nèi)蒙古有限公司2025屆空中乘務員航空安全員高校畢業(yè)生校園招聘筆試參考題庫附帶答案詳解
- 2025江蘇省安全員考試題庫附答案
- 4.2 明確概念的方法 課件高中政治統(tǒng)編版選擇性必修三邏輯與思維
- 2024年國網(wǎng)陜西省電力有限公司招聘筆試真題
- 2025年共同成立子公司的戰(zhàn)略合作協(xié)議書
- 安保部績效考核方案
- 2025年中國硫酸慶大霉素片行業(yè)市場深度分析及行業(yè)發(fā)展趨勢報告
- 2025年江蘇農(nóng)林職業(yè)技術(shù)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年背光源導光板市場分析現(xiàn)狀
- 2025山東能源集團中級人才庫選拔高頻重點提升(共500題)附帶答案詳解
- 2025年度新股東增資擴股股權(quán)激勵與員工持股計劃協(xié)議3篇
評論
0/150
提交評論