版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
AllrightsreservedtoRun:ai.
NopartofthiscontentmaybeusedwithoutexpresspermissionofRun:ai.
PAGE
4
www.run.ai
TheBestGPUforDeepLearning
CriticalConsiderationsforLarge-ScaleAI
Traditionally,thetrainingphaseofthedeeplearningpipelinetakesthelongesttoachieve.Thisisnotonlyatimeconsumingprocess,butanexpensiveone.Themostvaluablepartofadeeplearningpipelineisthehumanelement.Datascientistsoftenwaitforhoursordaysfortrainingtocomplete,whichhurtstheirproductivityandthetimetobringnewmodelstomarket.
Tosignificantlyreducetrainingtime,youcanusedeeplearningGPUs,whichenableyouto
performAIcomputingoperationsinparallel.WhenassessingGPUs,youneedtoconsidertheabilitytointerconnectmultipleGPUs,thesupportingsoftwareavailable,licensing,dataparallelism,GPUmemoryuseandperformance.
Inthisguide,youwilllearn:
TheimportanceofGPUsindeeplearning 3
HowtochoosethebestGPUfordeeplearning 3
UsingconsumerGPUsfordeeplearning 4
BestdeeplearningGPUsfordatacenters 5
DGXfordeeplearningatscale 6
AutomatedDeepLearningGPUManagementWithRun:ai 8
WhyAreGPUsImportantinDeepLearning?
GPUFactorstoConsider
ThesefactorsaffectthescalabilityandeaseofuseoftheGPUsyouchoose:
Thelongestandmostresourceintensivephaseofmostdeeplearningimplementationsisthe
trainingphase.Thisphasecanbeaccomplishedinareasonableamountoftimeformodelswithsmallernumbersofparametersbutasyournumberincreases,yourtrainingtimedoesaswell.Thishasadualcost;yourresourcesareoccupiedforlongerandyourteamisleftwaiting,wastingvaluabletime.
Graphicalprocessingunits(GPUs)canreducethesecosts,enablingyoutorunmodelswithmassivenumbersofparametersquicklyandefficiently.ThisisbecauseGPUsenableyoutoparallelizeyourtrainingtasks,distributingtasksoverclustersofprocessorsandperformingcomputeoperationssimultaneously.
GPUsarealsooptimizedtoperformtargettasks,finishingcomputationsfasterthannon-specializedhardware.TheseprocessorsenableyoutoprocessthesametasksfasterandfreeyourCPUsforothertasks.Thiseliminatesbottleneckscreatedbycomputelimitations.
HowtoChoosetheBestGPUforDeepLearning?
SelectingtheGPUsforyourimplementationhassignificantbudgetandperformanceimplications.YouneedtoselectGPUsthatcansupportyourproject
inthelongrunandhavetheabilitytoscalethroughintegrationandclustering.Forlarge-scaleprojects,thismeansselectingproduction-gradeordatacenterGPUs.
AbilitytoInterconnectGPUs
WhenchoosingaGPU,youneedtoconsiderwhichunitscanbeinterconnected.InterconnectingGPUsisdirectlytiedtothescalabilityofyourimplementationandtheabilitytousemulti-GPUanddistributedtrainingstrategies.Typically,consumerGPUs
donotsupportinterconnection(NVlinkforGPUinterconnectswithinaserver,andInfiniband/RoCEforlinkingGPUsacrossservers)andNVIDIAhasremovedinterconnectionsonGPUsbelowRTX2080.
SupportingSoftware
NVIDIAGPUsarethebestsupportedintermsofmachinelearninglibrariesandintegrationwithcommonframeworks,suchasPyTorchorTensorFlow.TheNVIDIACUDAtoolkitincludesGPU-acceleratedlibraries,aCandC++compilerandruntime,andoptimizationanddebuggingtools.Itenablesyoutogetstartedrightawaywithoutworryingaboutbuildingcustomintegrations.
LearnmoreinourguidesaboutPyTorchGPUs,andNVIDIAdeeplearningGPUs.
Licensing
AnotherfactortoconsiderisNVIDIA’sguidanceregardingtheuseofcertainchipsindatacenters.Asofalicensingupdatein2018,theremayberestrictionsonuseofCUDAsoftwarewithconsumerGPUsin
adatacenter.Thismayrequireorganizationstotransitiontoproduction-gradeGPUs.
AlgorithmFactorsAffectiveGPUUse
Inourexperiencehelpingorganizationsoptimizelarge-scaledeeplearningworkloads,thefollowingarethethreekeyfactorsyoushouldconsiderwhenscalingupyouralgorithmacrossmultipleGPUs.
DataParallelism–Considerhowmuchdatayouralgorithmsneedtoprocess.Ifdatasetsaregoingtobelarge,investinGPUscapableofperformingmulti-GPUtrainingefficiently.Forverylargescaledatasets,makesurethatserverscancommunicatequicklywitheachotherandwithstoragecomponents,usingtechnologylikeInfiniband/RoCE,toenableefficientdistributedtraining.
MemoryUse–Areyougoingtodealwithlargedatainputstomodel?Forexample,modelsprocessingmedicalimagesorlongvideoshaveverylargetrainingsets,soyou’dwanttoinvestinGPUswithrelativelylargememory.Bycontrast,tabulardatasuchastextinputsforNLPmodelsaretypicallysmall,andyoucanmakedowithlessGPUmemory.
NVIDIATitanV
TheTitanVisaPCGPUthatwasdesignedforusebyscientistsandresearchers.ItisbasedonNVIDIA’s
VoltatechnologyandincludesTensorCores.TheTitanVcomesinStandardandCEOEditions.
TheStandardeditionprovides12GBmemory,110teraflopsperformance,a4.5MBL2cache,and3,072-bitmemorybus.TheCEOeditionprovides32GBmemoryand125teraflopsperformance,6MBcache,and4,096-bitmemorybus.Thelattereditionalsousesthesame8-HiHBM2memorystacksthatareusedinthe32GBTeslaunits.
PerformanceoftheGPU–Considerifyou’regoingtouseGPUsfordebugginganddevelopment.Inthiscaseyouwon’tneedthemostpowerfulGPUs.Fortuningmodelsinlongruns,youneedstrongGPUstoacceleratetrainingtime,toavoidwaitinghoursordaysformodelstorun.
UsingConsumerGPUsforDeepLearning
WhileconsumerGPUsarenotsuitableforlarge-scaledeeplearningprojects,theseprocessorscanprovideagoodentrypointfordeeplearning.
ConsumerGPUscanalsobeacheapersupplementforlesscomplextasks,suchasmodelplanningorlow-leveltesting.However,asyouscaleup,you’llwanttoconsiderdatacentergradeGPUsand
high-enddeeplearningsystemslikeNVIDIA’sDGXseries(learnmoreinthefollowingsections).
Inparticular,theTitanVhasbeenshowntoprovideperformancesimilartodatacenter-gradeGPUswhenitcomestoWordRNNs.Additionally,itsperformanceforCNNsisonlyslightlybelowhighertieroptions.TheTitanRTXandRTX2080Tiaren’tfarbehind.
NVIDIATitanRTX
TheTitanRTXisaPCGPUbasedonNVIDIA’sTuringGPUarchitecturethatisdesignedforcreativeandmachinelearningworkloads.ItincludesTensorCoreandRTCoretechnologiestoenableraytracingandacceleratedAI.
EachTitanRTXprovides130teraflops,24GBGDDR6memory,6MBcache,and11GigaRayspersecond.
Thisisdueto72TuringRTCoresand576multiprecisionTuringTensorCores.
NVIDIAGeForceRTX2080Ti
TheGeForceRTX2080TiisaPCGPUdesignedforenthusiasts.ItisbasedontheTU102graphics
processor.EachGeForceRTX2080Tiprovides11GBofmemory,a352-bitmemorybus,a6MBcache,androughly120teraflopsofperformance.
BestDeepLearningGPUsforLarge-ScaleProjectsandDataCenters
ThefollowingareGPUsrecommendedforuseinlarge-scaleAIprojects.
NVIDIATeslaA100
TheA100isaGPUwithTensorCoresthatincorporatesmulti-instanceGPU(MIG)technology.Itwasdesignedformachinelearning,dataanalytics,andHPC.TheTeslaA100ismeanttobescaledtouptothousandsofunitsandcanbepartitioned
intosevenGPUinstancesforanysizeworkload.EachTeslaA100providesupto624teraflopsperformance,40GBmemory,1,555GBmemorybandwidth,and600GB/sinterconnects.
NVIDIATeslaV100
TheNVIDIATeslaV100isaTensorCoreenabledGPUthatwasdesignedformachinelearning,deeplearning,andhighperformancecomputing(HPC).ItispoweredbyNVIDIAVoltatechnology,whichsupportstensorcoretechnology,specializedforacceleratingcommontensoroperationsindeeplearning.EachTeslaV100provides149teraflopsofperformance,upto32GBmemory,anda4,096-bitmemorybus.
NVIDIATeslaP100
TheTeslaP100isaGPUbasedonanNVIDIAPascalarchitecturethatisdesignedformachinelearningandHPC.EachP100providesupto21teraflopsofperformance,16GBofmemory,anda4,096-bitmemorybus.
NVIDIATeslaK80
TheTeslaK80isaGPUbasedontheNVIDIAKeplerarchitecturethatisdesignedtoacceleratescientificcomputinganddataanalytics.Itincludes4,992NVIDIACUDAcoresandGPUBoost?technology.EachK80providesupto8.73teraflopsofperformance,24GBofGDDR5memory,and480GBofmemorybandwidth.
GoogleTPU
SlightlydifferentareGoogle’stensorprocessingunits(TPUs).TPUsarechiporcloud-based,application-specificintegratedcircuits(ASIC)fordeeplearning.TheseunitsarespecificallydesignedforusewithTensorFlowandareavailableonlyonGoogleCloudPlatform.
EachTPUcanprovideupto420teraflopsofperformanceand128GBhighbandwidthmemory(HBM).Therearealsopodversionsavailablethatcanprovideover100petaflopsofperformance,32TBHBM,anda2Dtoroidalmeshnetwork.
DGXforDeepLearningatScale
CPUO
CPUO
NIC
NIC
NIC
NIC
PCIeSwitches
PCIeSwitches
V100GPU3
V100GPU0
V100GPU4
V100GPU7
NVLink
V100GPU2
V100GPU1
V100GPU5
V100GPU6
PCIe
QPI
TheNVIDIADGXsystemsarefullstacksolutionsdesignedforenterprise-grademachinelearning.ThesesystemsarebasedonasoftwarestackthatisoptimizedforAI,multi-nodescalability,andenterprise-gradesupport.
YoucanimplementtheDGXstackincontainersoronbaremetal.Thistechnologyismeanttobe
plug-and-playandisfullyintegratedwithNVIDIAdeeplearninglibrariesandsoftwaresolutions.DGXisavailableforserver-classworkstations,servers,orpods.Below,theserveroptionsareintroduced.
DGX-1
TheDGX-1isaGPUserverbasedontheUbuntuLinuxHostOS.ItintegrateswithRedHatsolutionsandincludestheDIGITSdeeplearningtrainingapplication,theNVIDIADeepLearningSDK,theCUDAtoolkit,andtheDockerEngineUtilityforNVIDIAGPU.
EachDGX-1provides:
TwoIntelXeonCPUsfordeeplearningframeworkcoordination,boot,andstoragemanagement
Upto8TeslaV100TensorCoresGPUswith32GBofmemory
300Gb/sNVLinkinterconnects
800GB/scommunicationwithlow-latency
Single480GBbootOSSSDandfour1.92TBSASSSDs(7.6TBtotal)configuredasaRAID0stripedvolume
DGX-2
TheDGX-2isthenextlevelupfromtheDGX-1.ItisbasedontheNVSwitchnetworkingfabricforgreaterparallelismandscalability.
EachDGX-2provides:
DGXA100
TheDGXA100isdesignedtobeauniversalsystemformachinelearningworkloads,includinganalytics,training,andinference.ItisfullyoptimizedforCUDA-X.TheDGXA100canbestackedwithotherA100unitstocreatemassiveAIclusters,includingtheNVIDIADGXSuperPOD.
Twopetaflopsofperformance
2X960GBNVMESSDsforOSstorageand30TBofSSDstorage
EachDGXA100provides:
Fivepetaflopsofperformance
16TeslaV100TensorCoreGPUswith32GBofmemory
1.6TB/slow-latency,bi-directionalbandwidth
1.5TBsystemmemory
EightA100TensorCoreGPUswith40GBmemory
SixNVSwitchesfor4.8TBbi-directionalbandwidth
Two64-coreAMDCPUsfordeeplearningframeworkcoordination,boot,andstorage
TwoXeonPlatinumCPUsfordeeplearningframeworkcoordination,boot,andstorage
1TBsystemmemory,2x1.92TBM.2NVMEdrivesforOSstorageand15TBSSDstorage
TwohighI/Oethernetcards
AllrightsreservedtoRun:ai.
NopartofthiscontentmaybeusedwithoutexpresspermissionofRun:ai.
PAGE
8
www.run.ai
AutomatedDeepLearningGPUManagementWithRun:ai
Run:aiautomatesresourcemanagementandworkloadorchestrationformachinelearninginfrastructure.WithRun:ai,youcanautomaticallyrunasmanycomputeintensiveexperimentsasneeded.
HerearesomeofthecapabilitiesyougainwhenusingRun:ai:
MLOps
Intoday’shighlycompetitiveeconomy,enterprisesarelookingtoartificialintelligenceingeneralandmachineanddeeplearninginparticulartotransformbigdataintoactionableinsightsthatcanhelpthembetteraddresstheirtargetaudiences,improvetheirdecision-makingprocesses,andstreamlinetheirsupplychainsandproductionprocesses,tomentionjustafewofthemanyusecasesoutthere.InordertostayaheadofthecurveandcapturethefullvalueofML,however,companiesmuststrategicallyembraceMLOps.
SeetoparticlesinourMLOpsguide:
Advancedvisibility:createanefficientpipelineofresourcesharingbypoolingGPUcomputeresources
Nomorebottlenecks:youcansetupguaran
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學生體育運動對其身體健康的益處研究
- 2024版?zhèn)€人向單位借資合同模板3篇
- 2025年度校園食堂餐飲服務承包合作協(xié)議范本3篇
- 二零二五年度建筑機械租賃與培訓服務合同3篇
- 二零二五年度環(huán)保設施建設技術勞務分包協(xié)議3篇
- 2024短期勞動合同和長期合同規(guī)定
- 2024版建筑施工臨時承包合同范本
- 環(huán)境保護2024年度化妝品綠色生產(chǎn)協(xié)議
- 2024直飲水工程施工合同
- 二零二五年度智能電網(wǎng)基礎設施建設貸款居間服務合同A2篇
- 小學數(shù)學聽課記錄 精選(范文20篇)
- 2022年新疆青少年出版社有限公司招聘筆試題庫及答案解析
- 《動物生理學》課程思政優(yōu)秀案例
- 高分子材料完整版課件
- 住宅工程公共區(qū)域精裝修施工組織設計(217頁)
- 冷卻塔技術要求及質(zhì)量標準介紹
- 光伏電站設備監(jiān)造與性能驗收
- 10kV架空線路施工方案
- 2018江蘇蘇州中考英語真題解析
- 10KV戶外封閉型噴射式熔斷器技術規(guī)范書
- 奇瑞汽車4S店各類表格模板
評論
0/150
提交評論