深度學習最佳GPU_第1頁
深度學習最佳GPU_第2頁
深度學習最佳GPU_第3頁
深度學習最佳GPU_第4頁
深度學習最佳GPU_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

AllrightsreservedtoRun:ai.

NopartofthiscontentmaybeusedwithoutexpresspermissionofRun:ai.

PAGE

4

www.run.ai

TheBestGPUforDeepLearning

CriticalConsiderationsforLarge-ScaleAI

Traditionally,thetrainingphaseofthedeeplearningpipelinetakesthelongesttoachieve.Thisisnotonlyatimeconsumingprocess,butanexpensiveone.Themostvaluablepartofadeeplearningpipelineisthehumanelement.Datascientistsoftenwaitforhoursordaysfortrainingtocomplete,whichhurtstheirproductivityandthetimetobringnewmodelstomarket.

Tosignificantlyreducetrainingtime,youcanusedeeplearningGPUs,whichenableyouto

performAIcomputingoperationsinparallel.WhenassessingGPUs,youneedtoconsidertheabilitytointerconnectmultipleGPUs,thesupportingsoftwareavailable,licensing,dataparallelism,GPUmemoryuseandperformance.

Inthisguide,youwilllearn:

TheimportanceofGPUsindeeplearning 3

HowtochoosethebestGPUfordeeplearning 3

UsingconsumerGPUsfordeeplearning 4

BestdeeplearningGPUsfordatacenters 5

DGXfordeeplearningatscale 6

AutomatedDeepLearningGPUManagementWithRun:ai 8

WhyAreGPUsImportantinDeepLearning?

GPUFactorstoConsider

ThesefactorsaffectthescalabilityandeaseofuseoftheGPUsyouchoose:

Thelongestandmostresourceintensivephaseofmostdeeplearningimplementationsisthe

trainingphase.Thisphasecanbeaccomplishedinareasonableamountoftimeformodelswithsmallernumbersofparametersbutasyournumberincreases,yourtrainingtimedoesaswell.Thishasadualcost;yourresourcesareoccupiedforlongerandyourteamisleftwaiting,wastingvaluabletime.

Graphicalprocessingunits(GPUs)canreducethesecosts,enablingyoutorunmodelswithmassivenumbersofparametersquicklyandefficiently.ThisisbecauseGPUsenableyoutoparallelizeyourtrainingtasks,distributingtasksoverclustersofprocessorsandperformingcomputeoperationssimultaneously.

GPUsarealsooptimizedtoperformtargettasks,finishingcomputationsfasterthannon-specializedhardware.TheseprocessorsenableyoutoprocessthesametasksfasterandfreeyourCPUsforothertasks.Thiseliminatesbottleneckscreatedbycomputelimitations.

HowtoChoosetheBestGPUforDeepLearning?

SelectingtheGPUsforyourimplementationhassignificantbudgetandperformanceimplications.YouneedtoselectGPUsthatcansupportyourproject

inthelongrunandhavetheabilitytoscalethroughintegrationandclustering.Forlarge-scaleprojects,thismeansselectingproduction-gradeordatacenterGPUs.

AbilitytoInterconnectGPUs

WhenchoosingaGPU,youneedtoconsiderwhichunitscanbeinterconnected.InterconnectingGPUsisdirectlytiedtothescalabilityofyourimplementationandtheabilitytousemulti-GPUanddistributedtrainingstrategies.Typically,consumerGPUs

donotsupportinterconnection(NVlinkforGPUinterconnectswithinaserver,andInfiniband/RoCEforlinkingGPUsacrossservers)andNVIDIAhasremovedinterconnectionsonGPUsbelowRTX2080.

SupportingSoftware

NVIDIAGPUsarethebestsupportedintermsofmachinelearninglibrariesandintegrationwithcommonframeworks,suchasPyTorchorTensorFlow.TheNVIDIACUDAtoolkitincludesGPU-acceleratedlibraries,aCandC++compilerandruntime,andoptimizationanddebuggingtools.Itenablesyoutogetstartedrightawaywithoutworryingaboutbuildingcustomintegrations.

LearnmoreinourguidesaboutPyTorchGPUs,andNVIDIAdeeplearningGPUs.

Licensing

AnotherfactortoconsiderisNVIDIA’sguidanceregardingtheuseofcertainchipsindatacenters.Asofalicensingupdatein2018,theremayberestrictionsonuseofCUDAsoftwarewithconsumerGPUsin

adatacenter.Thismayrequireorganizationstotransitiontoproduction-gradeGPUs.

AlgorithmFactorsAffectiveGPUUse

Inourexperiencehelpingorganizationsoptimizelarge-scaledeeplearningworkloads,thefollowingarethethreekeyfactorsyoushouldconsiderwhenscalingupyouralgorithmacrossmultipleGPUs.

DataParallelism–Considerhowmuchdatayouralgorithmsneedtoprocess.Ifdatasetsaregoingtobelarge,investinGPUscapableofperformingmulti-GPUtrainingefficiently.Forverylargescaledatasets,makesurethatserverscancommunicatequicklywitheachotherandwithstoragecomponents,usingtechnologylikeInfiniband/RoCE,toenableefficientdistributedtraining.

MemoryUse–Areyougoingtodealwithlargedatainputstomodel?Forexample,modelsprocessingmedicalimagesorlongvideoshaveverylargetrainingsets,soyou’dwanttoinvestinGPUswithrelativelylargememory.Bycontrast,tabulardatasuchastextinputsforNLPmodelsaretypicallysmall,andyoucanmakedowithlessGPUmemory.

NVIDIATitanV

TheTitanVisaPCGPUthatwasdesignedforusebyscientistsandresearchers.ItisbasedonNVIDIA’s

VoltatechnologyandincludesTensorCores.TheTitanVcomesinStandardandCEOEditions.

TheStandardeditionprovides12GBmemory,110teraflopsperformance,a4.5MBL2cache,and3,072-bitmemorybus.TheCEOeditionprovides32GBmemoryand125teraflopsperformance,6MBcache,and4,096-bitmemorybus.Thelattereditionalsousesthesame8-HiHBM2memorystacksthatareusedinthe32GBTeslaunits.

PerformanceoftheGPU–Considerifyou’regoingtouseGPUsfordebugginganddevelopment.Inthiscaseyouwon’tneedthemostpowerfulGPUs.Fortuningmodelsinlongruns,youneedstrongGPUstoacceleratetrainingtime,toavoidwaitinghoursordaysformodelstorun.

UsingConsumerGPUsforDeepLearning

WhileconsumerGPUsarenotsuitableforlarge-scaledeeplearningprojects,theseprocessorscanprovideagoodentrypointfordeeplearning.

ConsumerGPUscanalsobeacheapersupplementforlesscomplextasks,suchasmodelplanningorlow-leveltesting.However,asyouscaleup,you’llwanttoconsiderdatacentergradeGPUsand

high-enddeeplearningsystemslikeNVIDIA’sDGXseries(learnmoreinthefollowingsections).

Inparticular,theTitanVhasbeenshowntoprovideperformancesimilartodatacenter-gradeGPUswhenitcomestoWordRNNs.Additionally,itsperformanceforCNNsisonlyslightlybelowhighertieroptions.TheTitanRTXandRTX2080Tiaren’tfarbehind.

NVIDIATitanRTX

TheTitanRTXisaPCGPUbasedonNVIDIA’sTuringGPUarchitecturethatisdesignedforcreativeandmachinelearningworkloads.ItincludesTensorCoreandRTCoretechnologiestoenableraytracingandacceleratedAI.

EachTitanRTXprovides130teraflops,24GBGDDR6memory,6MBcache,and11GigaRayspersecond.

Thisisdueto72TuringRTCoresand576multiprecisionTuringTensorCores.

NVIDIAGeForceRTX2080Ti

TheGeForceRTX2080TiisaPCGPUdesignedforenthusiasts.ItisbasedontheTU102graphics

processor.EachGeForceRTX2080Tiprovides11GBofmemory,a352-bitmemorybus,a6MBcache,androughly120teraflopsofperformance.

BestDeepLearningGPUsforLarge-ScaleProjectsandDataCenters

ThefollowingareGPUsrecommendedforuseinlarge-scaleAIprojects.

NVIDIATeslaA100

TheA100isaGPUwithTensorCoresthatincorporatesmulti-instanceGPU(MIG)technology.Itwasdesignedformachinelearning,dataanalytics,andHPC.TheTeslaA100ismeanttobescaledtouptothousandsofunitsandcanbepartitioned

intosevenGPUinstancesforanysizeworkload.EachTeslaA100providesupto624teraflopsperformance,40GBmemory,1,555GBmemorybandwidth,and600GB/sinterconnects.

NVIDIATeslaV100

TheNVIDIATeslaV100isaTensorCoreenabledGPUthatwasdesignedformachinelearning,deeplearning,andhighperformancecomputing(HPC).ItispoweredbyNVIDIAVoltatechnology,whichsupportstensorcoretechnology,specializedforacceleratingcommontensoroperationsindeeplearning.EachTeslaV100provides149teraflopsofperformance,upto32GBmemory,anda4,096-bitmemorybus.

NVIDIATeslaP100

TheTeslaP100isaGPUbasedonanNVIDIAPascalarchitecturethatisdesignedformachinelearningandHPC.EachP100providesupto21teraflopsofperformance,16GBofmemory,anda4,096-bitmemorybus.

NVIDIATeslaK80

TheTeslaK80isaGPUbasedontheNVIDIAKeplerarchitecturethatisdesignedtoacceleratescientificcomputinganddataanalytics.Itincludes4,992NVIDIACUDAcoresandGPUBoost?technology.EachK80providesupto8.73teraflopsofperformance,24GBofGDDR5memory,and480GBofmemorybandwidth.

GoogleTPU

SlightlydifferentareGoogle’stensorprocessingunits(TPUs).TPUsarechiporcloud-based,application-specificintegratedcircuits(ASIC)fordeeplearning.TheseunitsarespecificallydesignedforusewithTensorFlowandareavailableonlyonGoogleCloudPlatform.

EachTPUcanprovideupto420teraflopsofperformanceand128GBhighbandwidthmemory(HBM).Therearealsopodversionsavailablethatcanprovideover100petaflopsofperformance,32TBHBM,anda2Dtoroidalmeshnetwork.

DGXforDeepLearningatScale

CPUO

CPUO

NIC

NIC

NIC

NIC

PCIeSwitches

PCIeSwitches

V100GPU3

V100GPU0

V100GPU4

V100GPU7

NVLink

V100GPU2

V100GPU1

V100GPU5

V100GPU6

PCIe

QPI

TheNVIDIADGXsystemsarefullstacksolutionsdesignedforenterprise-grademachinelearning.ThesesystemsarebasedonasoftwarestackthatisoptimizedforAI,multi-nodescalability,andenterprise-gradesupport.

YoucanimplementtheDGXstackincontainersoronbaremetal.Thistechnologyismeanttobe

plug-and-playandisfullyintegratedwithNVIDIAdeeplearninglibrariesandsoftwaresolutions.DGXisavailableforserver-classworkstations,servers,orpods.Below,theserveroptionsareintroduced.

DGX-1

TheDGX-1isaGPUserverbasedontheUbuntuLinuxHostOS.ItintegrateswithRedHatsolutionsandincludestheDIGITSdeeplearningtrainingapplication,theNVIDIADeepLearningSDK,theCUDAtoolkit,andtheDockerEngineUtilityforNVIDIAGPU.

EachDGX-1provides:

TwoIntelXeonCPUsfordeeplearningframeworkcoordination,boot,andstoragemanagement

Upto8TeslaV100TensorCoresGPUswith32GBofmemory

300Gb/sNVLinkinterconnects

800GB/scommunicationwithlow-latency

Single480GBbootOSSSDandfour1.92TBSASSSDs(7.6TBtotal)configuredasaRAID0stripedvolume

DGX-2

TheDGX-2isthenextlevelupfromtheDGX-1.ItisbasedontheNVSwitchnetworkingfabricforgreaterparallelismandscalability.

EachDGX-2provides:

DGXA100

TheDGXA100isdesignedtobeauniversalsystemformachinelearningworkloads,includinganalytics,training,andinference.ItisfullyoptimizedforCUDA-X.TheDGXA100canbestackedwithotherA100unitstocreatemassiveAIclusters,includingtheNVIDIADGXSuperPOD.

Twopetaflopsofperformance

2X960GBNVMESSDsforOSstorageand30TBofSSDstorage

EachDGXA100provides:

Fivepetaflopsofperformance

16TeslaV100TensorCoreGPUswith32GBofmemory

1.6TB/slow-latency,bi-directionalbandwidth

1.5TBsystemmemory

EightA100TensorCoreGPUswith40GBmemory

SixNVSwitchesfor4.8TBbi-directionalbandwidth

Two64-coreAMDCPUsfordeeplearningframeworkcoordination,boot,andstorage

TwoXeonPlatinumCPUsfordeeplearningframeworkcoordination,boot,andstorage

1TBsystemmemory,2x1.92TBM.2NVMEdrivesforOSstorageand15TBSSDstorage

TwohighI/Oethernetcards

AllrightsreservedtoRun:ai.

NopartofthiscontentmaybeusedwithoutexpresspermissionofRun:ai.

PAGE

8

www.run.ai

AutomatedDeepLearningGPUManagementWithRun:ai

Run:aiautomatesresourcemanagementandworkloadorchestrationformachinelearninginfrastructure.WithRun:ai,youcanautomaticallyrunasmanycomputeintensiveexperimentsasneeded.

HerearesomeofthecapabilitiesyougainwhenusingRun:ai:

MLOps

Intoday’shighlycompetitiveeconomy,enterprisesarelookingtoartificialintelligenceingeneralandmachineanddeeplearninginparticulartotransformbigdataintoactionableinsightsthatcanhelpthembetteraddresstheirtargetaudiences,improvetheirdecision-makingprocesses,andstreamlinetheirsupplychainsandproductionprocesses,tomentionjustafewofthemanyusecasesoutthere.InordertostayaheadofthecurveandcapturethefullvalueofML,however,companiesmuststrategicallyembraceMLOps.

SeetoparticlesinourMLOpsguide:

Advancedvisibility:createanefficientpipelineofresourcesharingbypoolingGPUcomputeresources

Nomorebottlenecks:youcansetupguaran

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論