版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ML-MACHINE
LEARNINGDL-DEEP
LEARNINGAI
–
ARTIFICIAL
INTELLIGENCEDS
–
DATA
SCIENCEVENKATA
REDDY
KONASANIPART-1What
is
MachineLearning?2ActivityC
l
o
s
e
y
o
u
r
e
y
e
s
a
n
d
th
i
n
k
a
b
o
u
t
tw
o
te
r
m
s
–M
a
c
h
i
n
e
L
e
a
r
n
i
n
g
a
n
d
A
r
t
i
f
i
c
i
a
l
I
n
te
l
l
i
g
e
n
c
e
.What
is
the
first
thing
that
comes
toyour
mind
when
you
hear
thesetermsMachine
LearningArtificial
Intelligence3WHAT
ARE
YOU
THINKINGABOUT
–
ROBOTS?4OR
ANY
AI
BASED
MOVIE?5HAVE
YOU
THOUGHTABOUT6MathematicsStatisticsDatasetsData
AnalysisOptimizationAlgorithmsData
MiningMachine
learning
(ML)
is
the
scientificstudy
ofalgorithms
and
statistical
models
that
computersystems
use
to
effectively
perform
a
specific
taskwithout
using
explicit
instructions,
relyingon
modelsand
inferenceinstead.OK
…WHAT
ISMACHINE
LEARNING?7WHATREALLY
IS
MACHINE
LEARNING
?-
WIKIPEDIAUsing
historical
data
to
make
futurepredictionsBuilding
models
on
historical
data
topredictionsTaking
training
data,
building
models
onthe
training
datausing
themodels
tomake
the
future
predictionsMaking
themachine
learn
the
patternsin
the
data9IN
SIMPLE
TERMS
..DATA
IS
IN
DIFFERENT
FORMSNumerical
dataImage
data
(pixel
intensities)Video
data(frames
per
second)Sounddata
(waves)Text
data
(tweets,
comments,
feedback)10APPLICATIONS
OF
NUMERICAL
DATACREDIT
RISK
MODELSIdentifying
risky
customersbefore
offering
a
loan11MARKETING
ANALYTICSDo
you
receive
any
marketingcalls?
Have
you
ever
receivedany
marketing
call
for
Audi
car?RETAIL
SALES
ANALYTICSHave
you
ever
wondered,
whyonly
you
are
gettingpromotional
offers
on
clothsand
accessories
where
as
I
amgetting
offers
on
apartments?FRAUD
ANALYTICSHow
does
a
bankdecide
thepotential
fraud
transactionsfrom
millions
of
credit
cardswipes?Face
recognition
–
Using
image
as
input
dataObject
recognition
–
Pixels
is
the
input
dataDigit
recognition
–
Using
text
as
imageSelf
Driving
Cars
–
Using
video
data
as
inputAPPLICATIONS
OFMACHINELEARNING
–IMAGES
AND
VIDEO
DATA12IMAGE
DATA
IS
ALSO
NUMERICAL
DATAS13Image
dataHuman
VisionComputer
Vision-1-1-1-1-1-1-1-10.9-0-1-1-1-1-1-1-1-1-1-1-1-1-10.310.3-1-1-1-1-1-1-1-1-1-1-1-1-011-1-1-1-1-1-1-1-1-1-1-1-1-10.810.6-1-1-1-1-1-1-1-1-1-1-1-10.510.8-1-1-1-1-1-1-1-1-1-1-1-10.110.9-0-1-1-1-1-1-1-1-1-1-1-1-011-0-1-1-1-1-1-1-1-1-1-1-1-10.910.3-1-1-1-10.510.90.1-1-1-1-10.310.9-1-1-10.111111-1-1-1-10.810.3-1-10.410.7-0-011-1-1-1-1110.1-10.110.3-1-1-010.6-1-1-1-1110.80.310.7-1-1-10.510-1-1-1-10.811110.50.20.80.810.9-1-1-1-1-1-00.8111111110.1-1-1-1-1-1-1-00.81111110.2-1-1-1-1-1-1-1-1-1-00.30.810.5-0-1-1-1-1-1Sentiment
AnalysisExtraction
of
key
topics
in
the
dataDocument
ClassificationAPPLICATIONS
ON
TEXTDATA14PART-2What
is
Deep
Learning?15ANNANN-
Artificial
Neural
NetworkANN
is
oneof
the
technique
in
Machine
LearningANN
has
input
layer
,
hidden
layerand
output
layerFor
a
really
complex
and
nonliner
datasets
we
need
several
hiddenlayersANN
with
multiple
hidden
layers
is
known
as
deep
neural
network16ANN
with
a
single
layer
isknown
asshallow
networkANN
with
multiple
hidden
layers
is
known
as
deep
neural
networkNot
just
multiple
hiddenlayerssometimes
the
type
of
hiddenlayer
isalso
different.This
concept
of
solving
problems
with
multiplehidden
layers
is
knownas
deep
learning17DEEP
LEARNINGDEEP
VS
SHALLOW
NETWORKSA
neural
network
with
single
hidden
layeris
called
a
shallow
networkA
neural
network
with
more
than
onehidden
layer
is
called
deep
neuralnetworkshallow
networkDeep
network18DEEP
VS
SHALLOW
NETWORKSA
singlelayer
might
not
have
theflexibility
to
capture
all
the
non
linearpatterns
in
the
datashallow
networkDeep
network19A
deep
network
first
learnsthe
primitive
features
followed
by
high
level
features.
This
helps
in
building
efficient
modelsLot
of
experiments
have
shown
that
a
deep
network
with
lessparametersperforms
better
than
ashallow
networkFor
example
deep
network
with
hidden
nodes
[10,10,10,10]
mightperform
better
than
shallownetwork
with
[80]hidden
nodesDeep
neural
networks
are
amazingly
powerful.With
sufficient
number
of
hidden
layers
and
nodes,
we
can
fit
a
modelto
any
type
of
dataThey
have
the
power
to
capture
any
amount
of
non
linearity20DEEP
NEURAL
NETWORKSDEEP
LEARNINGIS
A
SUBSET
OF
MACHINE
LEARNINGMachine
LearningDeep
Learning21PART-3What
is
Artificial
Intelligence?22MACHINE
LEARNING
MODELSTraining
dataBuild
Model23MACHINE
LEARNING
MODELSNew
dataApply
ModelClass1GetPredictionThis
prediction
can
beright
or
wrong24MACHINE
LEARNING
MODELSNew
dataApply
ModelClass2GetPredictionOne
way
modelsThis
prediction
can
beright
or
wrong25AI
=MACHINE
LEARNING
MODELS
+FEEDBACK
LOOPTraining
dataModel26AI
=MACHINE
LEARNING
MODELS
+FEEDBACK
LOOPNew
dataApply
ModelClass2GetPredictionFeedback
Loop27AI
=MACHINE
LEARNING
MODELS
+FEEDBACK
LOOPUpdate
Trainingdata
based
onfeedbackUpdate
the
Modelbased
ondataPredictionFeedback
LoopClass228Manual
entry
after
goingthrough
testcases
–
mapsIndirect
feedback
collection
based
onuser
actions
for
-
User
click
vs
notclick
on
your
YouTube
adIndirect
feedback
collection
based
onactions
–
In
case
of
self
driving
car,hitting
a
wall
is
an
action.HOW
IS
FEEDBACKCOLLECTED29Self
driving
carsSIRI
/
Ok-googleAlexa
homeRecommendation
systemsImage
recognitionSpeech
recognitionSpam
filteringAPPLICATIONS
OF
AI30MACHINE
LEARNING
IS
A
SUBSET
OF
ARTIFICIALINTELLIGENCEArtificial
IntelligenceMachine
LearningDeep
Learning31PART-4What
is
Data
Science?32Data
Driven
Decision
makingMaking
sense
out
of
dataFinding
hidden
patterns
in
the
dataAnalysis
using
not
just
machinelearning
models
but
also
using
datavisualizations,
intelligent
reportsMost
of
the
techniques
and
toolsseen
indata
analysis
in
early
days
arenow
falling
under
data
scienceWHAT
IS
DATASCIENCE?33MathematicsStatisticsCodingDatabase
managementData
AnalyticsPredictive
modellingMachine
LearningDeep
LearningDATA
SCIENCE
IS
AFUSION
OF
MANYFIELDS34DATA
SCIENCE–
FOUR
MAJOR
TYPE
OF
SKILLSDatabaseAnalytics
&MLBigdataPresentation35THE
TECHNIQUES
YOU
NEED
TOKNOWDatabaseKnowledgeData
base
ManagementData
blendingQueryingData
manipulationsETLPredictive
Analytics&
MLBasic
descriptivestatisticsAdvanced
analyticsPredictive
modelingMachineLearningBig
Data
knowledgeDistributedComputingBig
Data
analyticsUnstructured
dataanalysisPresentation
SkillData
visualizationsReportdesignInsights
presentation36MACHINE
LEARNING
TOOLS
AND
SOFTWARE'SDatabase
toolsSQL/MySqlOLAP
cubesTeradataDB2/Sql
Server/
Oracle/Informix/ExadataAnalytical
toolsSAS/R/SPSS/PythonWeka/MATLAB/TensorFlow/OCRBig
Data
ToolsHadoop,
Hive,
Pig,Mahout,
Spark,
JavaPresentation
ToolsExcelTableau,
Qlikview37DATA
SCIENCE
-DESIGNATIONSDatabase
DeveloperETL
DeveloperMIS
&
DBDeveloperData
ArchitectData
EngineerData
AnalystStatisticiansBusiness
AnalystData
ScientistBigdata
DeveloperHadoop
DeveloperSoftwareEngineerMIS
AnalystReporting
AnalystBusiness
Analyst38Data
ScienceMACHINE
LEARNING
IS
A
PART
OF
DATA
SCIENCE39SArtificial
IntelligenceMachine
Learning*
These
are
individual
interpretationsDeep
LearningPART-5The
Learning
Path40FAQ
BY
DATA
SCIENCEASPIRANTSI
want
to
be
data
scientist
whattraining
should
I
take?I
already
have
knowledge
on
fewtools,
what
are
my
next
steps?What
skill
should
I
add
to
my
profileto
make
it
to
next
level?I
am
new
to
data
science,
where
can
Istart
?41You
need
training
basedon
your
skill
level.Based
on
skill
set
we
can
divide
the
whole
datascience
aspirants
into
four
categoriesBeginner
-
Completely
new
to
Data
Scienceand
MLIntermediate
-
MIS
and
Reporting
AnalystAdvanced
–
Data
Analystand
PredictiveModelerComplete
Data
Scientist
–
ML,
Hadoop,
R,Python,DL,
AICATEGORIES
OF
PROFILES42THE
LEARNING
PATHS
43Tools
&
CodingR/SAS/Python/Hadoop/WekaBasic
Statistics
andMathematicsBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessTHE
LEARNING
PATH
–
OUR
SUGGESTIONSS
44Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessDo
not
try
to
learn
all
the
steps
in
one
sitting.You
need
to
learn,
absorb
and
then
practisebefore
youreach
the
next
stepMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1THE
LEARNING
PATH
–
OUR
SUGGESTIONSS
45Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessR
or
Python.
Bothare
really
good.
Pick
any
one
of
themIt
also
depends
on
your
business
problemIf
youareplanning
to
learn
deep
learningthen
go
for
pythonMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1THE
LEARNING
PATH
–
OUR
SUGGESTIONSS
46Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessDo
not
start
with
stage-2
or
stage-3
directly.Strong
fundamentals
will
make
thelearningeasy
in
later
stages.MathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1THE
LEARNING
PATH
–
OUR
SUGGESTIONSS
47Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessWhile
learningtheseconcepts,
try
toavoid
academic
style
courses.Look
for
the
courses
with
lot
of
hands-on
exercises
and
case
studiesMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1THE
LEARNING
PATH
–
OUR
SUGGESTIONSS
48Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessDo
not
focus
on
the
tool,
focus
on
the
technique
and
algorithmLearning
python
or
R
tool,
will
not
makeyou
a
datascientistMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1PART-6Course
Curriculum49FOCUS
IS
ON
FIRST
TWO
STAGESS
50Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1DURATION
–
10
DAYSS
51Basic
StatisticsandBasic
Algorithms
-Regression,Classification
andSegmentationAdvanced
MLAlgorithms
-NeuralNetworks,
SVMs,Random
Forest
andBoostingDeep
LearningModelsCNN,
RNN
and
LSTMAIModelsDeep
Q
LearningReinforced
LearningMarkovDecisionprocessMathematicsTools
&
CodingR/SAS/Python/Hadoop/WekaStage-2Stage-3Stage-1TWO
PHASES52PHASE-1
(5DAYS)Python
for
data
scienceData
manipulationsin
pythonBasic
StatisticsData
validation
and
CleaningRegressionLogistic
RegressionDecision
TreesCluster
AnalysisModel
Selection
and
CrossvalidationANN
–
Artificial
Neural
networksSVM
–Support
Vector
MachinesRandom
ForestBoostingNLP
&
Text
miningTensorFlow
&
kerasDeepLearning
ModelsConvolution
Neural
NetworkRecurrent
Neural
NetworksPHASE-2
(5DAYS)100%
Hands-on
Training30
case
studies
laced
in
the
courseCreated
for
Non-
StatisticiansDatasets
from
multiple
domains,codes
files
and
in
class
exercisesTeam
assignments
and
mentoringFinal
AssessmentE-learning
material
supportCOURSE
FEATURES53PART-7Data
Science
and
Machine
Learning
MythsSMYTH-1
:
MATHEMATICSMyth-1
:
To
be
a
gooddata
scientist,you
need
to
beexceptional
atstatistics,mathematics,calculous,
algorithms
etc.,Not
necessarily.55SMYTH-2
:
PROGRAMMINGMyth-2
:
To
be
a
gooddata
scientist,you
need
to
have
exceptional
codingskillslikePython,
Java,
C++
etc.,Not
necessarily.56SMYTH-3
:
COMPLICATED
MODELSMyth-3
:Data
science
is
all
about
building
complex
predictiveandmachine
learning
models
to
solving
business
problemsNot
necessarily.57SMYTH-4
:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電子合同法律效力認(rèn)定及證據(jù)保全操作規(guī)程3篇
- 二零二五年度汽車銷售與售后服務(wù)咨詢合同2篇
- 二零二五年鋼筋制作與安裝勞動合同規(guī)范3篇
- 二零二五版企業(yè)品牌形象策劃執(zhí)行合同3篇
- 二零二五年度工傷事故賠償協(xié)議及后續(xù)心理咨詢服務(wù)合同6篇
- 二零二五年度電梯產(chǎn)品研發(fā)與創(chuàng)新基金投資合同3篇
- 二零二五年度蜜蜂養(yǎng)殖環(huán)境監(jiān)測與改善合同2篇
- 小麥種子繁育生產(chǎn)合同(2篇)
- 二零二五年電子商務(wù)SET協(xié)議安全技術(shù)實(shí)施合同3篇
- 二零二五年智能工廠生產(chǎn)過程監(jiān)控合同樣本3篇
- 2024年采購代發(fā)貨合作協(xié)議范本
- 2024年業(yè)績換取股權(quán)的協(xié)議書模板
- 顳下頜關(guān)節(jié)疾病(口腔頜面外科學(xué)課件)
- 工業(yè)自動化設(shè)備維護(hù)保養(yǎng)指南
- 2024人教新版七年級上冊英語單詞英譯漢默寫表
- 《向心力》參考課件4
- 2024至2030年中國膨潤土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報告
- 2024年深圳中考數(shù)學(xué)真題及答案
- 土方轉(zhuǎn)運(yùn)合同協(xié)議書
- Module 3 Unit 1 Point to the door(教學(xué)設(shè)計)-2024-2025學(xué)年外研版(三起)英語三年級上冊
- 智能交通信號燈安裝合同樣本
評論
0/150
提交評論