版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Introduction
to
AI/ML
ConceptsA
bicycle
for
the
mindJustin
JeffressDeveloper
Advocate@SleepyDeveloperSurajSubramanianDeveloperAdvocate@subramenWhat
is
AI?Artificial
IntelligenceArtificial
IntelligenceRefers
to
the
simulation
of
humanintelligenceArtificialIntelligenceMimicking
theintelligence
orbehavioral
pattern
of
humans
orany
otherliving
entity.What
is
ML?Machine
LearningMachine
LearningEnables
computers
to
learn
from
dataArtificialIntelligenceMachineLearningA
techniqueby
which
a
computercan
“l(fā)earn”
fromdata
withoutusing
acomplex
set
of
rules.Mainly
based
on
training
a
modelfrom
datasetsInnovationsImageNetLargest
dataset
of
annotated
imagesCreated
in
2009
@
Stanford
UniversityCreators:
Fei-Fei
Li
&
Jia
Deng14
million
images22
thousand
categories
of
imagesLarge
Scale
Visual
Recognition
ChallengeImageNet’s
Yearly
AI
Challenge
to
inspire
and
reward
innovationCompetition
to
achieve
highest
accuracy
onthe
taskDriven
rapid
advancesComputer
visionDeep
learningMany
moreAlexNetWinner,
winner
chicken
dinnerConvolutionalNeural
NetworkDemonstrated
feasibility
deep
CNNs
end-to-end15.3%
top-5
error
rate!Enabled
further
innovation!
(VGGNet,
GoogLENet,
ResNet,
etc.)AlexNetAlexNetBlock
DiagramWhat
is
Deep
Learning?Deep
LearningPattern
Recognition
&
Feature
extraction
w/
multi-layer
neural
networksArtificialIntelligenceMachineLearningDeepLearningA
technique
to
perform
machinelearning
inspired
by
our
brain’sown
network
of
neurons.Deep
Neural
NetworksInspired
by
the
human
brainHidden
layer
1
Hidden
layer
2Input
LayerHidden
layer
3Output
LayerAI/ML
and
Deep
LearningUnderstanding
how
each
subset
fits
into
the
overall
pictureArtificialIntelligenceMachineLearningDeepLearningMimicking
theintelligence
orbehavioral
pattern
ofhumansor
any
otherliving
entity.Atechnique
by
which
acomputercan
“l(fā)earn”
from
datawithout
using
acomplex
set
ofrules.
Mainly
based
on
trainingamodel
from
datasetsA
technique
to
performmachinelearning
inspired
byour
brain’s
own
network
ofneurons.Deep
Learning
@
MetaIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIIf
you
use
Meta
Products,
DL
is
in
your
lifeNews
Feed
PersonalizationImage
andVideo
RecognitionLanguage
TranslationSpam
and
Fake
News
DetectionPredictive
AnalyticsHow
Deep
Learning
is
used
at
MetaInstagram’s
Explore
recommendersystem/blog/powered-by-ai-instagrams-explore-recommender-system/IntroductionDeep
LearningIntro
to
PyTorchGenerative
AICase
Study:
DisneyAnimated
face
detection/pytorch/how-disney-uses-pytorch-for-animated-character-recognition-a1722a182627IntroductionDeep
LearningIntro
to
PyTorchGenerative
AICase
Study:
DisneyIntroductionDeep
LearningIntro
to
PyTorchGenerative
AINon-human
facial
detection
presents
new
challenges/pytorch/how-disney-uses-pytorch-for-animated-character-recognition-a1722a182627Case
Study:
Blue
River
TechSelf-driving
automated
weed
eliminating
tractors!/pytorch/ai-for-ag-production-machine-learning-for-agriculture-e8cfdb9849a1IntroductionDeep
LearningIntro
to
PyTorchGenerative
AICase
Study:
Blue
River
TechWeed
detection
models/pytorch/ai-for-ag-production-machine-learning-for-agriculture-e8cfdb9849a1IntroductionDeep
LearningIntro
to
PyTorchGenerative
AICase
StudiesRed
=
Weed;Green
!=
Weed/pytorch/ai-for-ag-production-machine-learning-for-agriculture-e8cfdb9849a1IntroductionDeep
LearningIntro
to
PyTorchGenerative
AICheck
out
more
case
studiesGain
inspiration
for
your
AI/ML
projects/community-storiesAdvertising
&MarketingAgricultureAutonomous
DrivingEducationFinanceHealthcareInsuranceMedia
&
EntertainmentMedicalMiningRetailTechnologyTravelIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIPyTorchOpen-source
library
to
build
and
train
modelsBased
on
the
Torch
LibraryDeveloped
by
Facebook’s
AI
Research
LabReleased
in
2016Programming
interface
for
building
and
training
NeuralNetworksIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIPyTorchWell-known
domain-specific
librariesTorchTextTorchVisionTorchAudioIntroductionDeep
LearningIntro
to
PyTorchGenerative
AITypical
ML
Pipeline
with
PyTorchUnderstanding
the
processIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIGetting
started
with
PyTorchIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIUseful
resourcesLearn
thebasics:/tutorials/beginner/basics/intro.htmlQuickstart:/tutorials/beginner/basics/quickstart_tutorial.htmlWorkshop:
Identify
Objects
with
TorchVisionIdentify
objects
with
TorchVisionIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIIs
there
a
traffic
light
in
this
image?Identify
objects
with
TorchVisionIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIIs
there
a
traffic
light
in
this
image?Typical
pipeline
for
object
detectionIdentifying
objects
in
images
with
TorchVisionIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIHow
do
computers
see
images?IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIDo
Androids
Dream
of
Electric
Sheep?How
do
computers
see
images?Ever
openan
image
in
a
text
editor?IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsTensors:
Multi-dimensional
data
structuresScalarVectorMatrixTensor121
23
41
23
41IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsTensors:
Multi-dimensional
data
structuresScalarVectorMatrixTensorRank
0
TensorRank
1
TensorRank
2
TensorRank
3
Tensor121
23
41
23
41IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsTensors:
Multi-dimensional
data
structuresScalarVectorMatrixTensorRank
0
TensorRank
1
TensorRank
2
TensorRank
3
Tensor121
23
41
23
411234123412341234IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIRank
4
Tensor/tutorials/beginner/basics/tensorqs_tutorial.html/tutorials/beginner/introyt/tensors_deeper_tutorial.htmlWorkshop
key
concepts/tutorials/beginner/basics/tensorqs_tutorial.htmlImage
TensorsImage
tensors
are
typically
rank
3tensorsdim0:
number
of
channels
(3for
anRGBimage)dim1:
heightoftheimagedim2:
widthof
the
imageIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AITorchvision/vision/stable/index.htmlLibrary
for
Image
and
Video:datasetsmodels
(pretrained
and
untrained)transformationsWorkshop
key
conceptsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIBatchingImage1Image2Image3Image4Image5GPUWorkshop
key
conceptsBatchingImage1CPUQUEUEImage2Image3Image4Image5Image6IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsCPUQUEUEImage7Image8Image9Image10Image11GPUBatchingImage1Image2Image3Image4Image5Image6IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIGPUWorkshop
key
conceptsBatchingImage1Image2Image3Image4Image5Image1Image1Image1Image1Image1Batch
of
6
imagesIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsCPUQUEUEImage7Image8Image9Image10Image11GPUBatchingImage1Image2Image3Image4Image5Image6Image7Image7Image7Image7Image12Image8Image8Image8Image8Image18Image9Image9Image9Image9Image24Image10Image10Image10Image10Image30Image11Image11Image11Image11Image36IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIPretrained
ModelsYou
will
use
fasterrcnn_resnet50_fpn
for
the
labThe
name
refers
to
the
neural
architectures
used
in
themodel.Resnet50
is
a
popular
model
that
extracts
useful
information
from
an
imagetensorFaster
RCNN
is
an
object-detection
architecture
that
uses
Resnet’s
extractedfeatures
to
identify
objectsin
an
imageThe
model
has
been
trained
on
the
COCO
academicdatasetTorchvision
contains
several
more
pretrained
models
for
different
use
casesWorkshop
key
conceptsFast
R-CNN/pdf/1506.01497.pdfIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsCOCO
datasetCOCO
dataset
contains
many
common
objects.Models
trained
on
COCO
predict
the
class
ofthe
object
asaninteger.We
then
look
up
the
integer
to
find
out
the
object
itrepresentsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIModel
InferenceProcess
of
generating
a
prediction
from
inputsInPyTorch,
as
simple
asprediction
=model(input)If
inputis
a
batch
of
Nsamples,
outputis
a
batch
of
N
predictionsEach
prediction
is
a
listof
the
objects
detected
in
the
image,
andhow
confidentthemodel
isaboutthedetectedobjectWorkshop
key
conceptsPost
processingOutput...0:
[Pizza,
1]1:[P0e:p[pPeizrzoan,i,11]6]2:
[C1:he[Peesep,pe1r]oni,16]...2:
[C0:he[Peiszez,a1,
]1]IntroductionDeep
LearningIntro
to
PyTorchGenerative
AI1:
[Pepperoni,
16]2:
[Cheese,
1]...Use
TorchVision
to
identify
objectsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIFollow
the
steps
at
your
own
pace45
MIN11:15AM/fbsamples/mit-dl-workshophttps://discord.gg/uNRcgFVWWorkshop
wrap-upIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWe
learntImage
loading
and
manipulation
in
Python
and
PyTorchLoading
pretrained
models
with
TorchvisionBatch
processing
in
deeplearning
modelsInference
andpost-processing
with
object
detection
modelsGenerative
AIWhat
is
Generative
AI?What
is
a
modality?Input
vs
Output
ModalitiesGenerative
AI
can
be
segmented
by
modalityTextAudioImages
-
2DVideos
–
2D3D
assets–
static3D
assets-movementTextLines
of
codeEssays,
chatbots,
conversationAudioCleanedupaudioSongs
/
instrumentalpiecesVoice
RenderingsImages
-
2DVideos
–
2D3D
assets–
static3D
assets-movementInput
modalitiesOutputmodalitiesIntroductionDeep
LearningIntro
to
PyTorchGenerative
AINotablePlayersInnovators
in
the
generative
AI
spaceDALL-E2StableDiffusionIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIRefik
Anadol
StudiosIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIUsing
data
as
pigments
to
generate
a
new
artformRefik
Anadol
StudiosCheck
out
the
interviewhttps:///watch?v=yjPv2ltMt-EIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop:
Video
Synopsis
GeneratorCreate
a
text
summary
of
a
videoEasily
create
cliff’s
notes
for
videos!Art
&
AI/ML
collaborate
increative
ways,
like
how
the
Refik
Anadol
Studio
is
powered
by
PyTorch.
Watch
Refik
and
Christian
B.
talk
with
Developer
Advocates
Suraj
Subramanian
and
Justin
Jeffress
about
how
theStudio
uses
PyTorch
to
turn
data
into
pigments…IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIAnatomy
of
the
video
summarizerFrom
video
to
text
summaryIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsExtract
audio
from
videoFFMPEG
is
a
suite
oflibraries
and
programsfor
handling
video,
audio,
other
multimediafiles,
and
streams.It
isacommand-line
tool,
but
canalso
becalled
from
python
notebooks
by
prefixing
anexclamation
mark
(!)!ffmpeg
-i
input.mp4
output.aviIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsAutomatic
Speech
RecognitionBuilding
modelswith
PyTorch
isfun!Building
modelswith
PyTorch
is
fun!IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
key
conceptsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIText
SummarizationProduce
a
concise
and
accurate
summary
of
the
input
textEarlier
NLP
architectures
used
recurrent
neural
networks
(RNNs).
ModernNLPmodels
aretransformer-basedSummarization
models
are
general
language
models
that
have
been
fine-tuned
forsummary
generation
using
datasets
like
CNN
Dailymail,
Amazon
reviewsetc.Typically,
models
have
limits
on
the
input
length
i.e.
the
number
of
tokensconstituting
theinput
fedto
themodelWorkshop
key
conceptsTokenizationSplitting
a
largebody
of
textinto
smaller
pieces(tokens)Tokens
can
be
words,
phrases
or
even
whole
sentencesTokenization
helps
to
make
the
text
more
manageable
and
easier
to
process.IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIBuildyour
video
synopsis
generatorIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIFollow
the
steps
at
your
own
pace60
MIN/fbsamples/mit-dl-workshop/blob/main/video-summarizer/exercise.ipynbWe
learntFFMPEG
for
audio
extractionAutomatic
speech
recognitionNLP
concepts
(tokenization,
summarization)Whisper
and
Huggingface
APIsPandas
DataFramesIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop
wrap-upHow
might
you
use
the
summarizer?We
used
it
on
the
recording
of
this
workshop!IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIHow
might
you
use
the
summarizer?IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWe
used
it
on
the
recording
of
this
workshop!When
dealing
with
generative
AI,
you
have
different
modalities.An
input
modality
could
be
text,
it
could
beaudio.
It
couldbeimages,
videos,
3D
assets.
Generative
AI
is
a
type
of
artificialintelligence
that
is
being
made
available
to
third
parties
to
be
ableto
play
with.
Rafik
Anadol
Studios
is
using
generative
AI
to
createart
from
people's
brainwaves.
We're
going
to
go
through
aworkshop
on
how
to
create
a
video
synopsis
generator
with
AI.We're
going
to
be
using
two
different
AI
ML
models
to
achieve
thistask.
And
so
you'll
learn
some
more
details
as
we
go
along.
Onceyou've
done
this,
you'll
actually
have
the
necessary
components
to
be
able
to
do
whatever
video
you
want
to.
Python
is
aprogramming
language.
It
can
be
used
to
generate
videosummaries
and
other
types
ofdata.FeedbackIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIIthelps
us
improve
our
contenthttps://forms.gle/fYp6LdCcdufTRczc7Generative
AI
(cont.)OpenAIIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIText
completion,
image
and
code
generation;
Oh
my!chatGPTVirtual
writing
assistantIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIchatGPTYou
can
change
the
writing
style
with
a
simple
prompt!IntroductionDeep
LearningIntro
to
PyTorchGenerative
AINot
trained
onanything
post
2021Don’t
worry
you
can
fill
in
the
gapsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AINot
trained
onanything
post
2021Don’t
worry
you
can
fill
in
the
gapsIntroductionDeep
LearningIntro
to
PyTorchGenerative
AINot
trained
onanything
post
2021Don’t
worry
you
can
fill
in
the
gapsNeed
help
coding?Should
I
go
to
Stack
Overflow
or
chatGPT?IntroductionDeep
LearningIntro
to
PyTorchGenerative
AINeed
help
coding?Do
it
manually
using
recursionIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIOther
things
to
tryPoetryIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIWorkshop:
Generative
AI
as
a
creative
partnerGet
your
OpenAI
API
KeyHow
do
I
get
one?IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIGet
your
OpenAI
API
KeyHow
do
I
get
one?IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIGet
your
OpenAI
API
KeyHow
do
I
get
one?IntroductionDeep
LearningIntro
to
PyTorchGenerative
AIGet
your
OpenAI
API
KeyHow
do
I
get
one?Save
this
in
a
file
somewhereIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIPart
1:
Create
your
Open
AI
KeyIntroductionDeep
LearningIntro
to
PyTorchGenerative
AICreate
an
account,
save
your
API
key,
and
write
a
story5
MIN/api/https://discord.gg/uNRcgFVWPart
2:
Personal
Assistant
with
openAIIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIPart
2:
Personal
Assistant
with
openAIIntroductionDeep
LearningIntro
to
PyTorchGenerative
AIPar
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 升學(xué)宴家長(zhǎng)致辭(匯編15篇)
- 魯抗醫(yī)藥2024年度向特定對(duì)象發(fā)行A股股票方案的論證分析報(bào)告
- 前臺(tái)行政工作總結(jié)(15篇)
- 二年級(jí)語(yǔ)文教學(xué)工作計(jì)劃4篇
- 學(xué)生通訊錄系統(tǒng)課程設(shè)計(jì)
- 湖南常德市2024年九年級(jí)(上)物理期末模擬試卷附參考答案
- 同學(xué)聚會(huì)校長(zhǎng)致辭【五篇】
- 做銷售合同范本(2篇)
- 《職場(chǎng)溝通》電子教案 項(xiàng)目三 職場(chǎng)溝通傾聽(tīng)技能準(zhǔn)備
- 2025年會(huì)計(jì)、審計(jì)及稅務(wù)服務(wù)項(xiàng)目建議書(shū)
- 無(wú)人機(jī)表演服務(wù)合同
- 電氣自動(dòng)化專業(yè)職業(yè)生涯目標(biāo)規(guī)劃書(shū)范例及步驟
- 水利工程特點(diǎn)、重點(diǎn)、難點(diǎn)及應(yīng)對(duì)措施
- 物業(yè)經(jīng)理轉(zhuǎn)正述職
- 貿(mào)易崗位招聘面試題及回答建議(某大型國(guó)企)2025年
- 中南林業(yè)科技大學(xué)《高等代數(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 北師大版(2024新版)生物七年級(jí)上冊(cè)期末考點(diǎn)復(fù)習(xí)提綱
- 課件 軍人職責(zé)
- Unit 5 Fun ClubsSectionA1a-1d說(shuō)課稿2024-2025學(xué)年人教版英語(yǔ)七年級(jí)上冊(cè)
- 2025蛇年元旦晚會(huì)
- 浙江省杭州市2023-2024學(xué)年六年級(jí)上學(xué)期語(yǔ)文期末試卷(含答案)
評(píng)論
0/150
提交評(píng)論