2023-2024學(xué)年日喀則市重點(diǎn)中學(xué)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁(yè)
2023-2024學(xué)年日喀則市重點(diǎn)中學(xué)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁(yè)
2023-2024學(xué)年日喀則市重點(diǎn)中學(xué)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁(yè)
2023-2024學(xué)年日喀則市重點(diǎn)中學(xué)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁(yè)
2023-2024學(xué)年日喀則市重點(diǎn)中學(xué)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年日喀則市重點(diǎn)中學(xué)初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結(jié)論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.42.在一個(gè)不透明的盒子里有2個(gè)紅球和n個(gè)白球,這些球除顏色外其余完全相同,搖勻后隨機(jī)摸出一個(gè),摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.33.矩形具有而平行四邊形不具有的性質(zhì)是()A.對(duì)角相等 B.對(duì)角線互相平分C.對(duì)角線相等 D.對(duì)邊相等4.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標(biāo)系中的大致圖象是()A. B. C. D.5.若一個(gè)三角形的兩邊長(zhǎng)分別為5和7,則該三角形的周長(zhǎng)可能是()A.12 B.14 C.15 D.256.下列運(yùn)算不正確的是A.a(chǎn)5+C.2a27.如圖,已知點(diǎn)A(1,0),B(0,2),以AB為邊在第一象限內(nèi)作正方形ABCD,直線CD與y軸交于點(diǎn)G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn)E,則k的值是()(A)33(B)34(C)35(D)368.據(jù)資料顯示,地球的海洋面積約為360000000平方千米,請(qǐng)用科學(xué)記數(shù)法表示地球海洋面積面積約為多少平方千米()A. B. C. D.9.下列圖形是幾家通訊公司的標(biāo)志,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.10.下列計(jì)算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a611.如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.12.如圖,,,則的大小是A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知二次函數(shù)的圖象如圖所示,若方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是_____________.14.閱讀下面材料:在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問(wèn)題:已知:∠ACB是△ABC的一個(gè)內(nèi)角.求作:∠APB=∠ACB.小明的做法如下:如圖①作線段AB的垂直平分線m;②作線段BC的垂直平分線n,與直線m交于點(diǎn)O;③以點(diǎn)O為圓心,OA為半徑作△ABC的外接圓;④在弧ACB上取一點(diǎn)P,連結(jié)AP,BP.所以∠APB=∠ACB.老師說(shuō):“小明的作法正確.”請(qǐng)回答:(1)點(diǎn)O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;(2)∠APB=∠ACB的依據(jù)是_____.15.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.16.如圖,已知O為△ABC內(nèi)一點(diǎn),點(diǎn)D、E分別在邊AB和AC上,且,DE∥BC,設(shè)、,那么______(用、表示).17.每年農(nóng)歷五月初五為端午節(jié),中國(guó)民間歷來(lái)有端午節(jié)吃粽子、賽龍舟的習(xí)俗.某班同學(xué)為了更好地了解某社區(qū)居民對(duì)鮮肉粽(A)豆沙粽(B)小棗粽(C)蛋黃粽(D)的喜愛(ài)情況,對(duì)該社區(qū)居民進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).分析圖中信息,本次抽樣調(diào)查中喜愛(ài)小棗粽的人數(shù)為_(kāi)_______;若該社區(qū)有10000人,估計(jì)愛(ài)吃鮮肉粽的人數(shù)約為_(kāi)_______.18.如圖,某校根據(jù)學(xué)生上學(xué)方式的一次抽樣調(diào)查結(jié)果,繪制出一個(gè)未完成的扇形統(tǒng)計(jì)圖,若該校共有學(xué)生1500人,則據(jù)此估計(jì)步行的有_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)在等邊△ABC外側(cè)作直線AM,點(diǎn)C關(guān)于AM的對(duì)稱點(diǎn)為D,連接BD交AM于點(diǎn)E,連接CE,CD,AD.(1)依題意補(bǔ)全圖1,并求∠BEC的度數(shù);(2)如圖2,當(dāng)∠MAC=30°時(shí),判斷線段BE與DE之間的數(shù)量關(guān)系,并加以證明;(3)若0°<∠MAC<120°,當(dāng)線段DE=2BE時(shí),直接寫(xiě)出∠MAC的度數(shù).20.(6分)如圖,AB是⊙O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D是⊙O外一點(diǎn),AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.21.(6分)車輛經(jīng)過(guò)潤(rùn)揚(yáng)大橋收費(fèi)站時(shí),4個(gè)收費(fèi)通道A.B、C、D中,可隨機(jī)選擇其中的一個(gè)通過(guò).一輛車經(jīng)過(guò)此收費(fèi)站時(shí),選擇A通道通過(guò)的概率是;求兩輛車經(jīng)過(guò)此收費(fèi)站時(shí),選擇不同通道通過(guò)的概率.22.(8分)問(wèn)題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請(qǐng)計(jì)算線段CD的長(zhǎng);拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長(zhǎng).23.(8分)為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問(wèn)卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.種類ABCDE出行方式共享單車步行公交車的士私家車根據(jù)以上信息,回答下列問(wèn)題:(1)參與本次問(wèn)卷調(diào)查的市民共有人,其中選擇B類的人數(shù)有人;(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;(3)該市約有12萬(wàn)人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).24.(10分)聲音在空氣中傳播的速度y(m/s)是氣溫x(℃)的一次函數(shù),下表列出了一組不同氣溫的音速:氣溫x(℃)05101520音速y(m/s)331334337340343(1)求y與x之間的函數(shù)關(guān)系式:(2)氣溫x=23℃時(shí),某人看到煙花燃放5s后才聽(tīng)到聲響,那么此人與煙花燃放地約相距多遠(yuǎn)?25.(10分)如圖,已知反比例函數(shù)y=k1x與一次函數(shù)y=k2x+b的圖象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面積;若M(x1,y1),N(x2,y2)是反比例函數(shù)y=k1x的圖象上的兩點(diǎn),且x1<x2,y26.(12分)如圖,在中,,是邊上的高線,平分交于點(diǎn),經(jīng)過(guò),兩點(diǎn)的交于點(diǎn),交于點(diǎn),為的直徑.(1)求證:是的切線;(2)當(dāng),時(shí),求的半徑.27.(12分)如圖,已知∠AOB與點(diǎn)M、N求作一點(diǎn)P,使點(diǎn)P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫(xiě)作法)

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

由拋物線的開(kāi)口方向判斷a與1的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與1的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】①拋物線與y軸交于負(fù)半軸,則c<1,故①正確;②對(duì)稱軸x1,則2a+b=1.故②正確;③由圖可知:當(dāng)x=1時(shí),y=a+b+c<1.故③錯(cuò)誤;④由圖可知:拋物線與x軸有兩個(gè)不同的交點(diǎn),則b2﹣4ac>1.故④錯(cuò)誤.綜上所述:正確的結(jié)論有2個(gè).故選B.【點(diǎn)睛】本題考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,會(huì)利用對(duì)稱軸的值求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用.2、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.3、C【解析】試題分析:舉出矩形和平行四邊形的所有性質(zhì),找出矩形具有而平行四邊形不具有的性質(zhì)即可.解:矩形的性質(zhì)有:①矩形的對(duì)邊相等且平行,②矩形的對(duì)角相等,且都是直角,③矩形的對(duì)角線互相平分、相等;平行四邊形的性質(zhì)有:①平行四邊形的對(duì)邊分別相等且平行,②平行四邊形的對(duì)角分別相等,③平行四邊形的對(duì)角線互相平分;∴矩形具有而平行四邊形不一定具有的性質(zhì)是對(duì)角線相等,故選C.4、D【解析】

根據(jù)拋物線和直線的關(guān)系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應(yīng)在二、四象限,一次函數(shù)過(guò)原點(diǎn),應(yīng)在二、四象限.故選D【點(diǎn)睛】考核知識(shí)點(diǎn):反比例函數(shù)圖象.5、C【解析】

先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進(jìn)而求出周長(zhǎng)的取值范圍,從而可的求出符合題意的選項(xiàng).【詳解】∴三角形的兩邊長(zhǎng)分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長(zhǎng)<5+7+12,即14<三角形的周長(zhǎng)<24,故選C.【點(diǎn)睛】本題考查了三角形三條邊的關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.6、B【解析】(-2a7、D【解析】試題分析:過(guò)點(diǎn)E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點(diǎn):反比例函數(shù)綜合題.8、B【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).詳解:將360000000用科學(xué)記數(shù)法表示為:3.6×1.故選:B.點(diǎn)睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.9、C【解析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】A.不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形.故錯(cuò)誤;B.不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形.故錯(cuò)誤;C.是軸對(duì)稱圖形,也是中心對(duì)稱圖形.故正確;D.不是軸對(duì)稱圖形,是中心對(duì)稱圖形.故錯(cuò)誤.故選C.【點(diǎn)睛】掌握好中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合;中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180°后與原圖重合.10、D【解析】各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D11、C【解析】

連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計(jì)算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點(diǎn)睛】本題考查的是扇形面積計(jì)算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.12、D【解析】

依據(jù),即可得到,再根據(jù),即可得到.【詳解】解:如圖,,,又,,故選:D.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),兩直線平行,同位角相等.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】分析:先移項(xiàng),整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開(kāi)口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點(diǎn)睛:本題主要考查了拋物線與x軸的交點(diǎn)問(wèn)題,以及數(shù)形結(jié)合法;二次函數(shù)中當(dāng)b2-4ac>0時(shí),二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn).14、①線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等;②等量代換同弧所對(duì)的圓周角相等【解析】

(1)根據(jù)線段的垂直平分線的性質(zhì)定理以及等量代換即可得出結(jié)論.

(2)根據(jù)同弧所對(duì)的圓周角相等即可得出結(jié)論.【詳解】(1)如圖2中,∵M(jìn)N垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等),∴OA=OB=OC(等量代換)故答案是:(2)∵,∴∠APB=∠ACB(同弧所對(duì)的圓周角相等).故答案是:(1)線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等和等量代換;(2)同弧所對(duì)的圓周角相等.【點(diǎn)睛】考查作圖-復(fù)雜作圖、線段的垂直平分線的性質(zhì)、三角形的外心等知識(shí),解題的關(guān)鍵是熟練掌握三角形外心的性質(zhì).15、41【解析】

已知一元二次方程的根判別式為△=b2﹣4ac,代入計(jì)算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41【點(diǎn)睛】本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問(wèn)題的關(guān)鍵.16、【解析】

根據(jù),DE∥BC,結(jié)合平行線分線段成比例來(lái)求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是平面向量,解題的關(guān)鍵是熟練的掌握平面向量.17、120人,3000人【解析】

根據(jù)B的人數(shù)除以占的百分比得到調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)減去A、B、D的人數(shù)得到本次抽樣調(diào)查中喜愛(ài)小棗粽的人數(shù);利用該社區(qū)的總?cè)藬?shù)×愛(ài)吃鮮肉粽的人數(shù)所占的百分比得出結(jié)果.【詳解】調(diào)查的總?cè)藬?shù)為:60÷10%=600(人),本次抽樣調(diào)查中喜愛(ài)小棗粽的人數(shù)為:600﹣180﹣60﹣240=120(人);若該社區(qū)有10000人,估計(jì)愛(ài)吃鮮肉粽的人數(shù)約為:100003000(人).故答案為120人;3000人.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.也考查了利用樣本估計(jì)總體.18、1【解析】

∵騎車的學(xué)生所占的百分比是×100%=35%,∴步行的學(xué)生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若該校共有學(xué)生1500人,則據(jù)此估計(jì)步行的有1500×40%=1(人),故答案為1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)補(bǔ)全圖形如圖1所示,見(jiàn)解析,∠BEC=60°;(2)BE=2DE,見(jiàn)解析;(3)∠MAC=90°.【解析】

(1)根據(jù)軸對(duì)稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內(nèi)角和得出x+y即可得出結(jié)論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進(jìn)而得出∠CBD=30°,進(jìn)而得出∠BCD=90°,即可得出結(jié)論;(3)先作出EF=2BE,進(jìn)而判斷出EF=CE,再判斷出∠CBE=90°,進(jìn)而得出∠BCE=30°,得出∠AEC=60°,即可得出結(jié)論.【詳解】(1)補(bǔ)全圖形如圖1所示,根據(jù)軸對(duì)稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對(duì)稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點(diǎn)C,A,D在同一條直線上,為了說(shuō)明∠CBD=90°,畫(huà)圖時(shí),沒(méi)畫(huà)在一條直線上)延長(zhǎng)EB至F使BE=BF,∴EF=2BE,由軸對(duì)稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點(diǎn)睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質(zhì),軸對(duì)稱的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,作出圖形是解本題的關(guān)鍵.20、(1)見(jiàn)解析;(2)70°;(3)1.【解析】

(1)先根據(jù)等邊對(duì)等角得出∠B=∠D,即可得出結(jié)論;(2)先判斷出∠DFE=∠B,進(jìn)而得出∠D=∠DFE,即可求出∠D=70°,即可得出結(jié)論;(3)先求出BE=EF=2,進(jìn)而求AE=6,即可得出AB,進(jìn)而求出AC,再判斷出△ACG∽△ECA,即可得出結(jié)論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內(nèi)接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據(jù)勾股定理得,AB=,∴OA=OC=AB=,∵點(diǎn)C是的中點(diǎn),∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點(diǎn)睛】本題是幾何綜合題,涉及了圓的性質(zhì),圓周角定理,勾股定理,銳角三角函數(shù),相似三角形的判定和性質(zhì),圓內(nèi)接四邊形的性質(zhì),等腰三角形的性質(zhì)等,綜合性較強(qiáng),有一定的難度,熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.本題中求出BE=2也是解題的關(guān)鍵.21、(1);(2).【解析】試題分析:(1)根據(jù)概率公式即可得到結(jié)論;(2)畫(huà)出樹(shù)狀圖即可得到結(jié)論.試題解析:(1)選擇A通道通過(guò)的概率=,故答案為;(2)設(shè)兩輛車為甲,乙,如圖,兩輛車經(jīng)過(guò)此收費(fèi)站時(shí),會(huì)有16種可能的結(jié)果,其中選擇不同通道通過(guò)的有12種結(jié)果,∴選擇不同通道通過(guò)的概率==.22、(1)見(jiàn)解析;(2)CD=;(3)見(jiàn)解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問(wèn)題;

(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問(wèn)題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點(diǎn)共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問(wèn)題.試題解析:遷移應(yīng)用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結(jié)論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關(guān)于BM對(duì)稱,

∴BC=BE=BD=BA,F(xiàn)E=FC,

∴A、D、E、C四點(diǎn)共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,F(xiàn)H=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.23、(1)800,240;(2)補(bǔ)圖見(jiàn)解析;(3)9.6萬(wàn)人.【解析】試題分析:(1)由C類別人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)乘以B類別百分比即可得;(2)根據(jù)百分比之和為1求得A類別百分比,再乘以360°和總?cè)藬?shù)可分別求得;(3)總?cè)藬?shù)乘以樣本中A、B、C三類別百分比之和可得答案.試題解析:(1)本次調(diào)查的市民有200÷25%=800(人),∴B類別的人數(shù)為800×30%=240(人),故答案為800,240;(2)∵A類人數(shù)所占百分比為1﹣(30%+25%+14%+6%)=25%,∴A類對(duì)應(yīng)扇形圓心角α的度數(shù)為360°×25%=90°,A類的人數(shù)為800×25%=200(人),補(bǔ)全條形圖如下:(3)12×(25%+30%+25%)=9.6(萬(wàn)人),答:估計(jì)該市“綠色出行”方式的人數(shù)約為9.6萬(wàn)人.考點(diǎn):1、條形統(tǒng)計(jì)圖;2、用樣本估計(jì)總體;3、統(tǒng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論