福建省廈冂雙十中學(xué)2023-2024學(xué)年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第1頁(yè)
福建省廈冂雙十中學(xué)2023-2024學(xué)年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第2頁(yè)
福建省廈冂雙十中學(xué)2023-2024學(xué)年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第3頁(yè)
福建省廈冂雙十中學(xué)2023-2024學(xué)年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第4頁(yè)
福建省廈冂雙十中學(xué)2023-2024學(xué)年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省廈冂雙十中學(xué)2023-2024學(xué)年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.22.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度3.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.4.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.5.函數(shù)圖像可能是()A. B. C. D.6.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.7.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.8.復(fù)數(shù)的共軛復(fù)數(shù)記作,已知復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),復(fù)數(shù):滿足.則等于()A. B. C. D.9.新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級(jí)和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收增長(zhǎng)情況,則下列說(shuō)法錯(cuò)誤的是()A.2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收均逐年增加B.2016年我國(guó)數(shù)字出版業(yè)營(yíng)收超過(guò)2012年我國(guó)數(shù)字出版業(yè)營(yíng)收的2倍C.2016年我國(guó)新聞出版業(yè)營(yíng)收超過(guò)2012年我國(guó)新聞出版業(yè)營(yíng)收的1.5倍D.2016年我國(guó)數(shù)字出版營(yíng)收占新聞出版營(yíng)收的比例未超過(guò)三分之一10.已知,若,則等于()A.3 B.4 C.5 D.611.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.12.我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)(即質(zhì)數(shù))的和”,如,.在不超過(guò)20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對(duì)二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計(jì)算公式.如圖所示,弧田是由圓弧AB和其所對(duì)弦AB圍成的圖形,若弧田的弧AB長(zhǎng)為4π,弧所在的圓的半徑為6,則弧田的弦AB長(zhǎng)是__________,弧田的面積是__________.14.已知盒中有2個(gè)紅球,2個(gè)黃球,且每種顏色的兩個(gè)球均按,編號(hào),現(xiàn)從中摸出2個(gè)球(除顏色與編號(hào)外球沒(méi)有區(qū)別),則恰好同時(shí)包含字母,的概率為_(kāi)_______.15.一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則容器體積的最小值為_(kāi)________.16.曲線在點(diǎn)(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實(shí)數(shù)=____。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為是橢圓的一個(gè)焦點(diǎn),點(diǎn),直線的斜率為1.(1)求橢圓的方程;(1)若過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,是否存在直線使得?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.18.(12分)已知,求的最小值.19.(12分)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設(shè)cn=bnan,求數(shù)列20.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點(diǎn).(1)證明:平面平面;(2)求點(diǎn)到平面的距離.21.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程;(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.2、A【解析】

根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因?yàn)?,故要得到,只需將向左平移個(gè)單位長(zhǎng)度.故選:A.【點(diǎn)睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.3、B【解析】

作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.4、D【解析】

由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.5、D【解析】

先判斷函數(shù)的奇偶性可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來(lái)越小,趨近于0時(shí),,所以函數(shù),故排除選項(xiàng)B,故選:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,識(shí)別函數(shù)的圖象,屬于中檔題.6、D【解析】

由題意畫(huà)出圖形,將所在的面延它們的交線展開(kāi)到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長(zhǎng)為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,

∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開(kāi)到與所在的面共面,三線共線時(shí),最小,

設(shè)正方體的棱長(zhǎng)為,則,∴.

取,連接,則共面,在中,設(shè)到的距離為,

設(shè)到平面的距離為,

.

故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問(wèn)題,考查計(jì)算能力,是中檔題.7、B【解析】

根據(jù)分段函數(shù),分當(dāng),,將問(wèn)題轉(zhuǎn)化為的零點(diǎn)問(wèn)題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問(wèn)題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.8、A【解析】

根據(jù)復(fù)數(shù)的幾何意義得出復(fù)數(shù),進(jìn)而得出,由得出可計(jì)算出,由此可計(jì)算出.【詳解】由于復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),,則,,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考查了復(fù)數(shù)的坐標(biāo)表示、共軛復(fù)數(shù)以及復(fù)數(shù)的除法,考查計(jì)算能力,屬于基礎(chǔ)題.9、C【解析】

通過(guò)圖表所給數(shù)據(jù),逐個(gè)選項(xiàng)驗(yàn)證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項(xiàng)A正確;對(duì)于選項(xiàng)B:,正確;對(duì)于選項(xiàng)C:,故C不正確;對(duì)于選項(xiàng)D:,正確.選C.【點(diǎn)睛】本題主要考查柱狀圖是識(shí)別和數(shù)據(jù)分析,題目較為簡(jiǎn)單.10、C【解析】

先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因?yàn)?,所以有,得,故選:C.【點(diǎn)睛】該題考查的是有關(guān)向量的問(wèn)題,涉及到的知識(shí)點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.11、A【解析】

先化簡(jiǎn)求出,即可求得答案.【詳解】因?yàn)椋运怨蔬x:A【點(diǎn)睛】此題考查復(fù)數(shù)的基本運(yùn)算,注意計(jì)算的準(zhǔn)確度,屬于簡(jiǎn)單題目.12、A【解析】

首先確定不超過(guò)的素?cái)?shù)的個(gè)數(shù),根據(jù)古典概型概率求解方法計(jì)算可得結(jié)果.【詳解】不超過(guò)的素?cái)?shù)有,,,,,,,,共個(gè),從這個(gè)素?cái)?shù)中任選個(gè),有種可能;其中選取的兩個(gè)數(shù),其和等于的有,,共種情況,故隨機(jī)選出兩個(gè)不同的數(shù),其和等于的概率.故選:.【點(diǎn)睛】本題考查古典概型概率問(wèn)題的求解,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、612π﹣9【解析】

過(guò)作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長(zhǎng).利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長(zhǎng)為4π,弧所在的圓的半徑為6,過(guò)作,交于,根據(jù)圓的幾何性質(zhì)可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點(diǎn)睛】本小題主要考查弓形弦長(zhǎng)和弓形面積的計(jì)算,考查中國(guó)古代數(shù)學(xué)文化,屬于中檔題.14、【解析】

根據(jù)組合數(shù)得出所有情況數(shù)及兩個(gè)球顏色不相同的情況數(shù),讓兩個(gè)球顏色不相同的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】從袋中任意地同時(shí)摸出兩個(gè)球共種情況,其中有種情況是兩個(gè)球顏色不相同;故其概率是故答案為:.【點(diǎn)睛】本題主要考查了求事件概率,解題關(guān)鍵是掌握概率的基礎(chǔ)知識(shí)和組合數(shù)計(jì)算公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.15、【解析】

一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則圓柱形容器的底面直徑及高的最小值均等于長(zhǎng)方體的體對(duì)角線的長(zhǎng),長(zhǎng)方體的體對(duì)角線的長(zhǎng)為,所以容器體積的最小值為.16、或1【解析】

利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點(diǎn),由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點(diǎn)為,,切線與的交點(diǎn)為,可得,解得或。【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運(yùn)用,三角形的面積求法。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(1)不存在,理由見(jiàn)解析【解析】

(1)利用離心率和過(guò)點(diǎn),列出等式,即得解(1)設(shè)的方程為,與橢圓聯(lián)立,利用韋達(dá)定理表示中點(diǎn)N的坐標(biāo),用點(diǎn)坐標(biāo)表示,利用韋達(dá)關(guān)系代入,得到關(guān)于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當(dāng)直線的斜率不存在時(shí),,不符合題意.當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,聯(lián)立得,設(shè),則,,,即.設(shè),則,,,則,即,整理得,此方程無(wú)解,故的方程不存在.綜上所述,不存在直線使得.【點(diǎn)睛】本題考查了直線和橢圓綜合,考查了弦長(zhǎng)和中點(diǎn)問(wèn)題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.18、【解析】

討論和的情況,然后再分對(duì)稱軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當(dāng)時(shí),,它在上是減函數(shù)故函數(shù)的最小值為當(dāng)時(shí),函數(shù)的圖象思維對(duì)稱軸方程為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為綜上,【點(diǎn)睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題。19、(1)an=(2)Tn【解析】

(1)利用an與Sn的遞推關(guān)系可以an的通項(xiàng)公式;P點(diǎn)代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點(diǎn)P(bn,bn+1則數(shù)列{bn(2)因?yàn)閏n=b則13兩式相減得:23所以Tn【點(diǎn)睛】用遞推關(guān)系an=Sn-20、(1)證明見(jiàn)解析;(2).【解析】

(1)通過(guò)證明面,即可由線面垂直推證面面垂直;(2)根據(jù)面,將問(wèn)題轉(zhuǎn)化為求到面的距離,利用等體積法求點(diǎn)面距離即可.【詳解】(1)因?yàn)槔庵侵比庵?,所以又,所以面又,分別為AB,BC的中點(diǎn)所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點(diǎn)到平面的距離等于點(diǎn)到平面的距離設(shè)點(diǎn)到面的距離為由(1)可知,面且在中,,易知由等體積公式可知即由得所以到平面的距離等于【點(diǎn)睛】本題考查由線面垂直推證面面垂直,涉及利用等體積法求點(diǎn)面距離,屬綜合中檔題.21、(1)(2)見(jiàn)解析【解析】試題分析:(1)分別求得和,由點(diǎn)斜式可得切線方程;(2)由已知條件可得有兩個(gè)相異實(shí)根,,進(jìn)而再求導(dǎo)可得,結(jié)合函數(shù)的單調(diào)性可得,從而得證.試題解析:(1)由已知條件,,當(dāng)時(shí),,,當(dāng)時(shí),,所以所求切線方程為(2)由已知條件可得有兩個(gè)相異實(shí)根,,令,則,1)若,則,單調(diào)遞增,不可能有兩根;2)若,令得,可知在上單調(diào)遞增,在上單調(diào)遞減,令解得,由有,由有,從而時(shí)函數(shù)有兩個(gè)極值點(diǎn),當(dāng)變化時(shí),,的變化情況如下表單調(diào)遞減單調(diào)遞增單調(diào)遞減因?yàn)?,所以,在區(qū)間上單調(diào)遞增,.另解:由已知可得,則,令,則,可知函數(shù)在單調(diào)遞增,在單調(diào)遞減,若有兩個(gè)根,則可得,當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞增,所以.22、(1)(2)【解析】

(1)利用消參法以及點(diǎn)求解出的普通

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論