版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆甘肅省武威市古浪縣職業(yè)技術(shù)教育中心高考壓軸卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.2.已知集合,,則()A. B. C. D.3.我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”(注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,則的概率是()A. B. C. D.4.已知集合,集合,若,則()A. B. C. D.5.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.6.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.7.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.8.已知復(fù)數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.9.已知點,是函數(shù)的函數(shù)圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數(shù) B.,a為任意非零實數(shù)C.a(chǎn)、b均為任意實數(shù) D.不存在滿足條件的實數(shù)a,b10.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-311.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.12.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,的夾角為,且,則=____14.在中,角,,的對邊分別為,,,若,且,則面積的最大值為________.15.設(shè)Sn為數(shù)列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.16.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)△ABC的內(nèi)角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.18.(12分)已知函數(shù)(1)若恒成立,求實數(shù)的取值范圍;(2)若方程有兩個不同實根,,證明:.19.(12分)如圖1,與是處在同-個平面內(nèi)的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.20.(12分)已知函數(shù)(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.21.(12分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.22.(10分)已知函數(shù)(1)若,求證:(2)若,恒有,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.2、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學(xué)生的基本運算能力,是一道容易題.3、B【解析】
先列舉出不超過的素數(shù),并列舉出所有的基本事件以及事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數(shù)有:、、、、、,在不超過的素數(shù)中,隨機選取個不同的素數(shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數(shù)中,隨機選取個不同的素數(shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎(chǔ)題.4、A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎(chǔ)題.5、A【解析】
分段求解函數(shù)零點,數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.6、B【解析】
作出不等式組對應(yīng)的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.7、D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.8、A【解析】
對復(fù)數(shù)進行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實部為0,得到的值,從而得到復(fù)數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復(fù)數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.9、A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數(shù).【詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數(shù).故選:A【點睛】本題考查導(dǎo)數(shù)的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.10、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關(guān)鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-211、D【解析】
利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關(guān)距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.12、D【解析】
設(shè)雙曲線的左焦點為,連接,,,設(shè),則,,,和中,利用勾股定理計算得到答案.【詳解】設(shè)雙曲線的左焦點為,連接,,,設(shè),則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)平面向量模的定義先由坐標求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點睛】本題考查了平面向量模的求法及簡單應(yīng)用,平面向量數(shù)量積的定義及運算,屬于基礎(chǔ)題.14、【解析】
利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當且僅當時等號成立,∴,∴面積的最大值為.故答案為:【點睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.15、55【解析】
由求出.由,可得,兩式相減,可得數(shù)列是以1為首項,1為公差的等差數(shù)列,即求.【詳解】由題意,當n=1時,,當時,由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,.故答案為:55.【點睛】本題考查求數(shù)列的前項和,屬于基礎(chǔ)題.16、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應(yīng)用問題,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.18、(1)(2)詳見解析【解析】
(1)將原不等式轉(zhuǎn)化為,構(gòu)造函數(shù),求得的最大值即可;
(2)首先通過求導(dǎo)判斷的單調(diào)區(qū)間,考查兩根的取值范圍,再構(gòu)造函數(shù),將問題轉(zhuǎn)化為證明,探究在區(qū)間內(nèi)的最大值即可得證.【詳解】解:(1)由,即,即,令,則只需,,令,得,在上單調(diào)遞增,在上單調(diào)遞減,,的取值范圍是;(2)證明:不妨設(shè),當時,單調(diào)遞增,當時,單調(diào)遞減,,當時,,,要證,即證,由在上單調(diào)遞增,只需證明,由,只需證明,令,,只需證明,易知,由,故,,從而在上單調(diào)遞增,由,故當時,,故,證畢.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值等,關(guān)鍵是要對問題進行轉(zhuǎn)化,比如把恒成立問題轉(zhuǎn)化為最值問題,把根的個數(shù)問題轉(zhuǎn)化為圖像的交點個數(shù),進而轉(zhuǎn)化為證明不等式的問題,屬難題.19、(1)證明見解析(2)(3)【解析】
根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標原點,為軸建立空間直角坐標系,根據(jù),可知,,表示相應(yīng)點的坐標,分別求得平面與平面的法向量,代入求解.設(shè)所求幾何體的體積為,設(shè)為高,則,表示梯形BEFD和ABD的面積由,再利用導(dǎo)數(shù)求最值.【詳解】(1)證明:不妨設(shè)與的交點為與的交點為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因為平面,所以....(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標原點,為軸建立如圖所示的空間直角坐標系由題意知由可知,則則有,,設(shè)平面與平面的法向量分別為則有則所以因為,解得設(shè)所求幾何體的體積為,設(shè),則,當時,,當時,在是增函數(shù),在上是減函數(shù)當時,有最大值,即六面體的體積的最大值是【點睛】本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的體積,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.20、(1)證明見解析(2)【解析】
(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負,求導(dǎo),分,,三種情況討論求解.【詳解】(1)因為,所以,令,則,所以是的增函數(shù),故,即.因為所以,①當時,,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當時,所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當時,,使得,即,但當時,即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.21、(1)證明見解析;(2)是,理由見解析.【解析】
(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達定理即可證明,需要分類討論,【詳解】解:(1)當時直線方程為或,直線與橢圓相切.當時,由得,由題知,,即,所以.故直線與橢圓相切.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版中藥材撫育承包合作合同3篇
- 二零二五年綠色環(huán)保外架爬架租賃與施工合同3篇
- 二零二五年教育資源共享與銷售合同樣本3篇
- 二零二五版房地產(chǎn)項目土地二級開發(fā)與銷售合同協(xié)議書3篇
- 二零二五版企業(yè)內(nèi)部股權(quán)交易及管理服務(wù)合同2篇
- 二零二五年酒店集團年度客戶關(guān)系管理合作合同范本2篇
- 二零二五年船舶開荒保潔與設(shè)備維護合同范本3篇
- 二零二五版廢棄物處理廠環(huán)境監(jiān)測與治理服務(wù)合同3篇
- 二零二五版綠色金融貸款合同:綠色金融創(chuàng)新項目民間借貸合作協(xié)議3篇
- 二零二五版醫(yī)療機構(gòu)患者隱私保護保密合同3篇
- 《保單檢視專題》課件
- 建筑保溫隔熱構(gòu)造
- 智慧財務(wù)綜合實訓(xùn)
- 安徽省合肥市2021-2022學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)3
- 教育專家報告合集:年度得到:沈祖蕓全球教育報告(2023-2024)
- 肝臟腫瘤護理查房
- 護士工作壓力管理護理工作中的壓力應(yīng)對策略
- 2023年日語考試:大學(xué)日語六級真題模擬匯編(共479題)
- 皮帶拆除安全技術(shù)措施
- ISO9001(2015版)質(zhì)量體系標準講解
- 《培訓(xùn)資料緊固》課件
評論
0/150
提交評論