2024屆貴州省劍河縣第二中學高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第1頁
2024屆貴州省劍河縣第二中學高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第2頁
2024屆貴州省劍河縣第二中學高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第3頁
2024屆貴州省劍河縣第二中學高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第4頁
2024屆貴州省劍河縣第二中學高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆貴州省劍河縣第二中學高考全國統(tǒng)考預測密卷數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題:的否定為A. B.C. D.2.已知向量,(其中為實數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q5.已知角的終邊與單位圓交于點,則等于()A. B. C. D.6.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.7.半徑為2的球內(nèi)有一個內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.8.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.9.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.10.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.11.復數(shù)().A. B. C. D.12.已知實數(shù)集,集合,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,曲線在點處的切線與x軸相交于點A,其中e為自然對數(shù)的底數(shù).若點,的面積為3,則的值是______.14.已知平面向量與的夾角為,,,則________.15.設為銳角,若,則的值為____________.16.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.18.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值.19.(12分)函數(shù),且恒成立.(1)求實數(shù)的集合;(2)當時,判斷圖象與圖象的交點個數(shù),并證明.(參考數(shù)據(jù):)20.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構(gòu)成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.21.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.22.(10分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數(shù),求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結(jié)果)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.2、A【解析】

結(jié)合向量垂直的坐標表示,將兩個條件相互推導,根據(jù)能否推導的情況判斷出充分、必要條件.【詳解】由,則,所以;而當,則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎知識;考查運算求解能力,推理論證能力,應用意識.3、B【解析】

先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進行判斷.4、C【解析】

解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C5、B【解析】

先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數(shù)的定義和二倍角公式,是基礎題.6、D【解析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規(guī)劃相關的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學生轉(zhuǎn)化與劃歸的思想,是一道中檔題.7、B【解析】

設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.【點睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.8、A【解析】

由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數(shù)量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.9、B【解析】

由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關計算,屬于基礎題.10、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關鍵是作出軸截面圖形,屬中檔題.11、A【解析】試題分析:,故選A.【考點】復數(shù)運算【名師點睛】復數(shù)代數(shù)形式的四則運算的法則是進行復數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化.12、A【解析】

可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對求導,再根據(jù)點的坐標可得切線方程,令,可得點橫坐標,由的面積為3,求解即得.【詳解】由題,,切線斜率,則切線方程為,令,解得,又的面積為3,,解得.故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的切線,難度不大.14、【解析】

根據(jù)已知求出,利用向量的運算律,求出即可.【詳解】由可得,則,所以.故答案為:【點睛】本題考查向量的模、向量的數(shù)量積運算,考查計算求解能力,屬于基礎題.15、【解析】

∵為銳角,,∴,∴,,故.16、【解析】

求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關系,然后推出關系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)先將曲線化為普通方程,再由直角坐標系與極坐標系之間的轉(zhuǎn)化關系:,可得極坐標方程和曲線的直角坐標方程;(2)由已知可得出射線的極坐標方程為,聯(lián)立和的極坐標方程可得點A和點B的極坐標,從而得出,由的范圍可求得的取值范圍.【詳解】(1)曲線的普通方程為,即,其極坐標方程為;曲線的極坐標方程為,即,其直角坐標方程為;(2)射線的極坐標方程為,聯(lián)立,聯(lián)立,的取值范圍是【點睛】本題考查圓的參數(shù)方程與普通方程互化,圓,拋物線的極坐標方程與普通方程的互化,以及在極坐標下的直線與圓和拋物線的位置關系,屬于中檔題.18、(1)(2)【解析】

(1)當時,,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因為函數(shù)的圖象與軸恰好圍成一個直角三角形,所以,解得,當時,,函數(shù)的圖象與軸沒有交點,不符合題意;當時,,函數(shù)的圖象與軸恰好圍成一個直角三角形,符合題意.綜上,可得.19、(1);(2)2個,證明見解析【解析】

(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點個數(shù)轉(zhuǎn)化為方程實數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù),再利用導數(shù)討論此函數(shù)零點的個數(shù).【詳解】(1)的定義域為,因為,1°當時,在上單調(diào)遞減,時,使得,與條件矛盾;2°當時,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時,,要使恒成立,故.(2)原問題轉(zhuǎn)化為方程實根個數(shù)問題,當時,圖象與圖象有且僅有2個交點,理由如下:由,即,令,因為,所以是的一根;,1°當時,,所以在上單調(diào)遞減,,即在上無實根;2°當時,,則在上單調(diào)遞遞增,又,所以在上有唯一實根,且滿足,①當時,在上單調(diào)遞減,此時在上無實根;②當時,在上單調(diào)遞增,,故在上有唯一實根.3°當時,由(1)知,在上單調(diào)遞增,所以,故,所以在上無實根.綜合1°,2°,3°,故有兩個實根,即圖象與圖象有且僅有2個交點.【點睛】此題考查不等式恒成立問題、函數(shù)與方程的轉(zhuǎn)化思想,考查導數(shù)的運用,屬于較難題.20、(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規(guī)律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.21、(Ⅰ)證明見解析;(Ⅱ).【解析】

(Ⅰ)先證明

,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據(jù)題意以為軸、軸、軸建立空間直角坐標系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,則令,則,是平面的一個法向量設平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.【點睛】本題考查線面、面面垂直的判定定理與性質(zhì)定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.22、(1)(2)詳見解析(3)初中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論