![一種求解非線性約束優(yōu)化問題的無罰函數(shù)無濾子的方法_第1頁](http://file4.renrendoc.com/view12/M02/07/06/wKhkGWYygXCARX22AAKMC5OLHow110.jpg)
![一種求解非線性約束優(yōu)化問題的無罰函數(shù)無濾子的方法_第2頁](http://file4.renrendoc.com/view12/M02/07/06/wKhkGWYygXCARX22AAKMC5OLHow1102.jpg)
![一種求解非線性約束優(yōu)化問題的無罰函數(shù)無濾子的方法_第3頁](http://file4.renrendoc.com/view12/M02/07/06/wKhkGWYygXCARX22AAKMC5OLHow1103.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一種求解非線性約束優(yōu)化問題的無罰函數(shù)無濾子的方法Title:APenalty-freeandFilter-freeApproachforSolvingNonlinearConstrainedOptimizationProblemsAbstract:Nonlinearconstrainedoptimizationproblemsariseinvariousfields,suchasengineering,economics,andmachinelearning.Theseproblemsofteninvolvefindingtheoptimalvaluesofasetofdecisionvariableswhilesatisfyingasetofconstraints.Inthispaper,weproposeapenalty-freeandfilter-freeapproachforsolvingsuchproblems.Theproposedmethodavoidstheuseofpenaltyfunctionsandfilters,whichcanintroduceadditionalcomplexityandcomputationalcost.Instead,itleveragesthebenefitsofadirectsearchmethodcombinedwithanadaptivesamplingstrategytoefficientlyexplorethesolutionspace.Theeffectivenessoftheproposedapproachisdemonstratedthroughnumericalexperimentsonasetofbenchmarkproblems.1.Introduction:Nonlinearconstrainedoptimizationproblemscanbemathematicallyformulatedasminimizinganobjectivefunctionsubjecttoasetofconstraints.Traditionalmethodsforsolvingtheseproblemsofteninvolvetheuseofpenaltyfunctionsorfilterstotransformtheconstrainedproblemintoanunconstrainedone.However,theseapproachescanleadtodifficultiesinfindingtheglobalminimum,introduceadditionalcomplexity,andresultinahighercomputationalburden.Thispaperproposesapenalty-freeandfilter-freeapproachthatovercomestheselimitationsandprovidesanefficientsolutionstrategy.2.ProblemFormulation:Thenonlinearconstrainedoptimizationproblemisrepresentedasfollows:Minimize:f(x)Subjectto:g(x)≤0h(x)=0wheref(x)istheobjectivefunction,g(x)representsinequalityconstraints,h(x)depictsequalityconstraints,andxisthedecisionvariablevector.3.TheProposedMethod:Theproposedapproachisbasedonadirectsearchmethodthatiterativelyexploresthesolutionspacetofindtheoptimalvaluesofthedecisionvariables.Unliketraditionalmethods,nopenaltyfunctionsorfiltersareusedtohandletheconstraints.Instead,theapproachutilizesanadaptivesamplingstrategy,whichadaptivelyadjuststhesamplingpointsbasedontheevaluationresultstoguidethesearchtowardspromisingregionsofthesolutionspace.Thisadaptivesamplingstrategyallowsforamoreefficientexplorationofthefeasibleregionwhilesatisfyingtheconstraints.4.AdaptiveSamplingStrategy:Theadaptivesamplingstrategyconsistsoftwomaincomponents:explorationandexploitation.Intheexplorationphase,thealgorithminitiallysamplespointsrandomlyfromthefeasibleregionandevaluatestheobjectivefunctionandconstraintsatthesepoints.Theseevaluationsprovideinformationaboutthelandscapeandguidethesearchtowardspromisingregions.Intheexploitationphase,thealgorithmfocusesonrefiningthesolutionbysamplingnearthepromisingregionsbasedontheevaluationresults.Thisiterativeprocesscontinuesuntilaterminationcriterionismet.5.Algorithm:Thealgorithmforthepenalty-freeandfilter-freeapproachisoutlinedasfollows:1.Initializethedecisionvariablevectorx.2.Generateasetofinitialsamplingpointsrandomlywithinthefeasibleregion.3.Evaluatetheobjectivefunctionandconstraintsatthesepoints.4.Identifythebestpointbasedontheobjectivefunctionvalueandconstraintviolation.5.Adaptivelyadjustthesamplingpointsbasedontheevaluationresults.6.Repeatsteps3-5untilaterminationcriterionismet(e.g.,maximumnumberofiterations,convergencecheck).7.Outputthebestsolutionfound.6.ExperimentalResults:Toassesstheeffectivenessoftheproposedapproach,numericalexperimentsareconductedonasetofbenchmarkproblemsfromdifferentdomains.Theresultsarecomparedwithtraditionalpenalty-basedapproachesandfilter-basedapproaches.Theexperimentalresultsdemonstratethatthepenalty-freeandfilter-freeapproachoutperformsthetraditionalmethodsintermsofsolutionaccuracy,convergencespeed,andcomputationalefficiency.Italsoshowsrobustnesstodifferentproblemtypesanddimensions.7.Conclusion:Inthispaper,apenalty-freeandfilter-freeapproachforsolvingnonlinearconstrainedoptimizationproblemshasbeenproposed.Byleveraginganadaptivesamplingstrategywithinadirectsearchframework,theapproachavoidsthecomplexityandcomputationalburdenassociatedwithpenaltyfunctionsandfilters.Numerica
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 管委會農(nóng)發(fā)行合作協(xié)議
- 汽車制造行業(yè)智能制造解決方案合同
- 網(wǎng)絡(luò)營銷與推廣服務(wù)合同
- 節(jié)能環(huán)保行業(yè)綠色能源技術(shù)與項目開發(fā)方案
- 工程設(shè)計咨詢服務(wù)合同
- 旅客運輸服務(wù)合同
- 電子產(chǎn)品維修服務(wù)保障與免責(zé)協(xié)議
- 不動產(chǎn)財產(chǎn)租賃合同
- 項目團(tuán)隊季度工作總結(jié)報告
- 22 我們奇妙的世界(教學(xué)設(shè)計)-2023-2024學(xué)年統(tǒng)編版語文三年級下冊
- 水土保持方案編寫規(guī)范
- 【高分復(fù)習(xí)筆記】李天元《旅游學(xué)概論》(第7版)筆記和課后習(xí)題詳解
- 王淑玲《做最好的自己》讀書分享
- 《優(yōu)秀教師的自我修煉》讀書筆記PPT模板思維導(dǎo)圖下載
- 列車運行阻力
- 疾病診斷相關(guān)分組概念
- Python深度學(xué)習(xí)實戰(zhàn)-基于Pytorch全書電子講義完整版ppt整套教學(xué)課件最全教學(xué)教程
- 2023年黑龍江建筑職業(yè)技術(shù)學(xué)院高職單招(語文)試題庫含答案解析
- 十八項醫(yī)療核心制度考試題及答案
- 《地史學(xué)》第01章-緒論
- 主要工業(yè)產(chǎn)品統(tǒng)計指南
評論
0/150
提交評論