


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一種面向微電網(wǎng)中無線傳感器網(wǎng)絡(luò)的高能效壓縮感知方法Title:AnEnergy-efficientCompressedSensingMethodforWirelessSensorNetworksinMicrogridsAbstract:WirelessSensorNetworks(WSNs)playacrucialroleinmonitoringandcontrollingmicrogrids,whicharedecentralizedpowersystemscomprisingdistributedenergyresources.However,theenergyconstraintsandlimitedcapacityofWSNnodesmakeitchallengingtotransmitthelargeamountofdatacollectedinmicrogridapplications.Toaddressthisissue,thispaperproposesanenergy-efficientcompressedsensingmethodforWSNsinmicrogrids.Theproposedmethodleveragesthespatialandtemporalcorrelationofthedatatoreducethesensingandcommunicationenergyconsumption,whilepreservingtheaccuracyofmonitoringandcontroltasks.Experimentalresultsdemonstratethattheproposedmethodachievessignificantenergysavingscomparedtotraditionaldataacquisitionmethods.1.IntroductionMicrogridshavegainedsignificantattentionduetotheirpotentialforimprovingreliability,efficiency,andsustainabilityofpowerdistribution.WSNshavebeenwidelyusedinmicrogridapplicationsforreal-timemonitoringandcontrol.However,thelarge-scaledeploymentofWSNnodesinmicrogridsposessignificantchallengesintermsofenergyconsumptionandnetworkcapacity.Thispaperaimstoaddressthesechallengesbyproposinganenergy-efficientcompressedsensingmethodforWSNsinmicrogrids.2.BackgroundCompressedSensing(CS)isapromisingtechniquethatenablesefficientdataacquisitionandtransmissioninWSNs.CSleveragesthesparsityofthedatatorecovertheoriginalsignalaccuratelyfromareducednumberofmeasurements.Byreducingthenumberoftransmitteddatasamples,CScansignificantlyreduceenergyconsumptioninWSNs.3.Energy-efficientCompressedSensingMethodTheproposedmethodexploitsthespatialandtemporalcorrelationofthedatainmicrogridstoreduceenergyconsumptionwhilemaintainingtherequiredaccuracyofmonitoringandcontroltasks.Themethodconsistsofthefollowingsteps:a)DataAcquisition:WSNnodescollectdatafromvarioussensorsinthemicrogrid.Toreducethenumberofmeasurements,theproposedmethodleveragesthespatialcorrelationamongneighboringnodes.Eachnodeonlysamplesandtransmitsthedifferencebetweenitsmeasuredvalueandtheaveragevalueofitsneighbors.b)DataCompression:Thecollecteddataissparseinthetemporaldomainduetotheslowvariationsofmicrogridparameters.Byexploitingthissparsity,theproposedmethodappliesacompressivesamplingalgorithmtofurtherreducethedatasize.c)DataReconstruction:Atthesinknode,thecompressedmeasurementsarereconstructedintotheoriginalsignalusingasparserecoveryalgorithm.Thereconstructeddatacanthenbeusedformonitoringandcontroltasksinthemicrogrid.4.ExperimentalResultsToevaluatetheperformanceoftheproposedmethod,experimentsareconductedusingarealisticmicrogridtestbed.TheEnergyConsumptionIndex(ECI)isusedtomeasuretheenergyefficiencyoftheproposedmethodcomparedtotraditionaldataacquisitionmethods.Experimentalresultsdemonstratethattheproposedmethodachievessubstantialenergysavingswithoutsacrificingtheaccuracyofmonitoringandcontroltasks.5.DiscussionandFutureWorkTheproposedmethodoffersanenergy-efficientsolutionforWSNsinmicrogridsbyleveragingthesparsityandcorrelationofdata.However,thereareseveralareasforfurtherimprovementandresearch.Futureworkcouldfocusonoptimizingthesparsity-basedreconstructionalgorithmstoimprovetheaccuracyofdatarecovery.Additionally,theproposedmethodcouldbeextendedtoconsiderdynamicnetworkconditionsandadaptivelyadjustthecompressionratiobasedontheavailableenergyandcommunicationcapacity.6.ConclusionThispaperpresentedanenergy-efficientcompressedsensingmethodforWSNsinmicrogrids,aimingtoreducetheenergyconsumptionandnetworkcapacityrequirements.Theproposedmethodexploitsthespatialandtemporalcorrelationofdataandachievessignificantenergysavingscompared
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車維修崗位管理制度
- 村級項目養(yǎng)護(hù)管理制度
- 面點培訓(xùn)室管理制度
- 多媒體應(yīng)用設(shè)計師考試回顧總結(jié)試題及答案
- 電商公司銷售部管理制度
- 外匯一次性外債管理制度
- 放射科衛(wèi)生管理制度
- 鞋廠各車間管理制度
- 殘運會設(shè)施細(xì)節(jié)管理制度
- 加油站考試題庫及答案解析視頻
- 地理-美國 課件-2024-2025學(xué)年人教版七年級下冊地理
- GB/T 30134-2025冷庫管理規(guī)范
- 2025年安徽省合肥八中高考最后一卷地理試題及答案
- 浪潮新員工培訓(xùn)體系大綱
- 安徽省合肥市45中學(xué)2025屆七年級數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題含解析
- 中學(xué)生成就目標(biāo)導(dǎo)向下的學(xué)習(xí)滿意度影響機(jī)制探討
- 【課件】2025屆高考英語最后一課課件
- 預(yù)防醫(yī)學(xué)知識試題及答案匯編
- 地七年級下冊全冊知識要點總復(fù)習(xí)-2024-2025學(xué)年七年級地理教學(xué)課件(人教版2024)
- 財務(wù)培訓(xùn):AI與財稅合規(guī)的未來
- 全國農(nóng)業(yè)行業(yè)職業(yè)技能大賽(農(nóng)業(yè)技術(shù)員)理論考試題(附答案)
評論
0/150
提交評論