![河南省示范中學(xué)2024屆高考壓軸卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view14/M01/33/37/wKhkGWYy92CAAgWhAAHoSiPgDZc244.jpg)
![河南省示范中學(xué)2024屆高考壓軸卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view14/M01/33/37/wKhkGWYy92CAAgWhAAHoSiPgDZc2442.jpg)
![河南省示范中學(xué)2024屆高考壓軸卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view14/M01/33/37/wKhkGWYy92CAAgWhAAHoSiPgDZc2443.jpg)
![河南省示范中學(xué)2024屆高考壓軸卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view14/M01/33/37/wKhkGWYy92CAAgWhAAHoSiPgDZc2444.jpg)
![河南省示范中學(xué)2024屆高考壓軸卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view14/M01/33/37/wKhkGWYy92CAAgWhAAHoSiPgDZc2445.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省示范中學(xué)2024屆高考壓軸卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.2.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.3.如圖,在中,點(diǎn)是的中點(diǎn),過點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.34.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點(diǎn)旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④5.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.6.已知斜率為k的直線l與拋物線交于A,B兩點(diǎn),線段AB的中點(diǎn)為,則斜率k的取值范圍是()A. B. C. D.7.已知函數(shù)在上都存在導(dǎo)函數(shù),對于任意的實(shí)數(shù)都有,當(dāng)時,,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.函數(shù)與的圖象上存在關(guān)于直線對稱的點(diǎn),則的取值范圍是()A. B. C. D.9.在邊長為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.10.已知,則下列不等式正確的是()A. B.C. D.11.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.312.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.54二、填空題:本題共4小題,每小題5分,共20分。13.我國著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開平方后即得面積.所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),,,,,則的面積為________.14.已知函數(shù)在上僅有2個零點(diǎn),設(shè),則在區(qū)間上的取值范圍為_______.15.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.16.一個袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數(shù)字最大的為4的概率是__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.18.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.19.(12分)已知矩形中,,E,F(xiàn)分別為,的中點(diǎn).沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點(diǎn),連接.(1)求證:平面;(2)求二面角的余弦值.20.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.(1)當(dāng)為何值時,公路的長度最短?求出最短長度;(2)當(dāng)公路的長度最短時,設(shè)公路交軸,軸分別為,兩點(diǎn),并測得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長度.21.(12分)已知橢圓的離心率為,且以原點(diǎn)O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知動直線l過右焦點(diǎn)F,且與橢圓C交于A、B兩點(diǎn),已知Q點(diǎn)坐標(biāo)為,求的值.22.(10分)已知三點(diǎn)在拋物線上.(Ⅰ)當(dāng)點(diǎn)的坐標(biāo)為時,若直線過點(diǎn),求此時直線與直線的斜率之積;(Ⅱ)當(dāng),且時,求面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.2、A【解析】
由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.3、C【解析】
連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.4、D【解析】
計(jì)算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯誤,得到答案.【詳解】,,,當(dāng)沿軸正方向平移個單位時,重合,故②正確;,,故,函數(shù)關(guān)于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)知識和圖像的綜合應(yīng)用.5、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點(diǎn)有復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.6、C【解析】
設(shè),,,,設(shè)直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達(dá)定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設(shè)直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點(diǎn)為,,,,,,,,把代入,得,,,故選:【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達(dá)定理的應(yīng)用,屬于中檔題.7、B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當(dāng)時,,又,所以為偶函數(shù),從而等價于,因此選B.【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.8、C【解析】
由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時,;當(dāng)時,,故時,取得極大值,也即為最大值,當(dāng)趨近于時,趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.9、C【解析】
根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C【點(diǎn)睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.10、D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng).【詳解】已知,賦值法討論的情況:(1)當(dāng)時,令,,則,,排除B、C選項(xiàng);(2)當(dāng)時,令,,則,排除A選項(xiàng).故選:D.【點(diǎn)睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng),是一種簡單有效的方法,屬于中等題.11、C【解析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.12、C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點(diǎn)睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問題的能力和計(jì)算整理能力,難度較易.14、【解析】
先根據(jù)零點(diǎn)個數(shù)求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因?yàn)樵谏嫌袃蓚€零點(diǎn),所以,所以,所以且,所以,所以,所以,令,所以,所以,因?yàn)?,所以,所以,所以,所以,,所?故答案為:.【點(diǎn)睛】本題考查三角函數(shù)圖象與性質(zhì)的綜合,其中涉及到換元法求解三角函數(shù)值域的問題,難度較難.對形如的函數(shù)的值域求解,關(guān)鍵是采用換元法令,然后根據(jù),將問題轉(zhuǎn)化為關(guān)于的函數(shù)的值域,同時要注意新元的范圍.15、【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點(diǎn)睛】本題考查幾何體與三視圖的對應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計(jì)算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進(jìn)行判斷.16、【解析】
由題,得滿足題目要求的情況有,①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選和②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選,一共有種情況;②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數(shù)字最大的為4的概率.故答案為:【點(diǎn)睛】本題主要考查古典概型與組合的綜合問題,考查學(xué)生分析問題和解決問題的能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)直線的直角坐標(biāo)方程為;曲線的普通方程為;(Ⅱ).【解析】
(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標(biāo)方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點(diǎn)在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程的兩根,則有.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.18、(1),;(2)或【解析】
(1)將曲線的極坐標(biāo)方程和直線的參數(shù)方程化為直角坐標(biāo)方程,聯(lián)立方程,即可求得曲線與的交點(diǎn)坐標(biāo);(2)由直線的普通方程為,故上任意一點(diǎn),根據(jù)點(diǎn)到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標(biāo)方程為.當(dāng)時,直線的普通方程為由解得或.從而與的交點(diǎn)坐標(biāo)為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點(diǎn)到的距離為則.當(dāng)時,的最大值為所以;當(dāng)時,的最大值為,所以.綜上所述,或【點(diǎn)睛】解題關(guān)鍵是掌握極坐標(biāo)和參數(shù)方程化為直角坐標(biāo)方程的方法,和點(diǎn)到直線距離公式,考查了分析能力和計(jì)算能力,屬于中檔題.19、(1)證明見解析(2)【解析】
(1)取中點(diǎn)R,連接,,可知中,且,由Q是中點(diǎn),可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標(biāo)系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點(diǎn)R,連接,,則在中,,且,又Q是中點(diǎn),所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點(diǎn)G,以E為原點(diǎn),,,分別為x,y,x軸,建立如圖所示的空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為,,,所以,,設(shè)平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點(diǎn)睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運(yùn)算求解能力,難度一般.20、(1)當(dāng)時,公路的長度最短為千米;(2)(千米).【解析】
(1)設(shè)切點(diǎn)的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點(diǎn)間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設(shè)點(diǎn)的坐標(biāo)為,又,則直線的方程為,由此得直線與坐標(biāo)軸交點(diǎn)為:,則,故,設(shè),則.令,解得=10.當(dāng)時,是減函數(shù);當(dāng)時,是增函數(shù).所以當(dāng)時,函數(shù)有極小值,也是最小值,所以,此時.故當(dāng)時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點(diǎn)睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國電子廢棄物回收拆解服務(wù)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球微型矩形電連接器行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球點(diǎn)型可燃?xì)怏w和有毒氣體探測器行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025年全球及中國電磁精密儀器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球激勵應(yīng)用程序行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球半導(dǎo)體用PFA閥門行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球送粉式金屬3D打印機(jī)行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025年全球及中國滑動芯組件行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球工業(yè)級3D傳感器行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025年全球及中國桌面出版 (DTP) 服務(wù)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 面試官面試技巧(精簡版)課件
- 中央空調(diào)節(jié)能改造方案
- 高校圖書館服務(wù)
- 員工提前辭工管理制度
- 環(huán)衛(wèi)一體化運(yùn)營方案
- 科技進(jìn)步類現(xiàn)代軌道交通綜合體設(shè)計(jì)理論與關(guān)鍵技術(shù)公
- 源代碼審計(jì)報(bào)告模板
- 干式變壓器知識大全課件
- 重大危險(xiǎn)源公示牌(完整)-2
- 初一英語英語閱讀理解專項(xiàng)訓(xùn)練15篇
- 高中地理學(xué)情分析方案和報(bào)告
評論
0/150
提交評論