江蘇省無錫市錫東片2024年中考數(shù)學五模試卷含解析_第1頁
江蘇省無錫市錫東片2024年中考數(shù)學五模試卷含解析_第2頁
江蘇省無錫市錫東片2024年中考數(shù)學五模試卷含解析_第3頁
江蘇省無錫市錫東片2024年中考數(shù)學五模試卷含解析_第4頁
江蘇省無錫市錫東片2024年中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省無錫市錫東片2024年中考數(shù)學五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結(jié)論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結(jié)論的個數(shù)是()A.0 B.1 C.2 D.32.有四包真空包裝的火腿腸,每包以標準質(zhì)量450g為基準,超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù).下面的數(shù)據(jù)是記錄結(jié)果,其中與標準質(zhì)量最接近的是()A.+2 B.﹣3 C.+4 D.﹣13.某幾何體由若干個大小相同的小正方體搭成,其主視圖與左視圖如圖所示,則搭成這個幾何體的小正方體最少有()A.4個 B.5個 C.6個 D.7個4.的整數(shù)部分是()A.3 B.5 C.9 D.65.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y66.“單詞的記憶效率”是指復習一定量的單詞,一周后能正確默寫出的單詞個數(shù)與復習的單詞個數(shù)的比值.右圖描述了某次單詞復習中四位同學的單詞記憶效率與復習的單詞個數(shù)的情況,則這四位同學在這次單詞復習中正確默寫出的單詞個數(shù)最多的是()A. B. C. D.7.如圖,將含60°角的直角三角板ABC繞頂點A順時針旋轉(zhuǎn)45°度后得到△AB′C′,點B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π8.下列關(guān)于x的方程中一定沒有實數(shù)根的是()A. B. C. D.9.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里10.二次函數(shù)y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)

D.(-,-2)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△PAB中,PA=PB,M、N、K分別是PA,PB,AB上的點,且AM=BK,BN=AK.若∠MKN=40°,則∠P的度數(shù)為___12.若一個反比例函數(shù)的圖象經(jīng)過點A(m,m)和B(2m,-1),則這個反比例函數(shù)的表達式為______13.一個多邊形,除了一個內(nèi)角外,其余各角的和為2750°,則這一內(nèi)角為_____度.14.如圖,已知,第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第四象限內(nèi)的點B在反比例函數(shù)y=的圖象上.且OA⊥OB,∠OAB=60°,則k的值為_________.15.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)

16.計算:2sin245°﹣tan45°=______.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.18.(8分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.19.(8分)計算:=_____.20.(8分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.21.(8分)為提高市民的環(huán)保意識,倡導“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?22.(10分)我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)23.(12分)城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.24.如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當點E在邊BC上時,求證DE=EB;如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)反比例函數(shù)的性質(zhì)和比例系數(shù)的幾何意義逐項分析可得出解.【詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數(shù)的幾何意義.2、D【解析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質(zhì)量是-1的工件最接近標準工件.故選D.3、B【解析】

由主視圖和左視圖確定俯視圖的形狀,再判斷最少的正方體的個數(shù).【詳解】由主視圖和左視圖可確定所需正方體個數(shù)最少時俯視圖(數(shù)字為該位置小正方體的個數(shù))為:則搭成這個幾何體的小正方體最少有5個,故選B.【點睛】本題考查了由三視圖判斷幾何體,根據(jù)主視圖和左視圖畫出所需正方體個數(shù)最少的俯視圖是關(guān)鍵.【詳解】請在此輸入詳解!【點睛】請在此輸入點睛!4、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故選C.5、D【解析】

根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關(guān)的整式運算法則要求學生很熟練,才能正確求出結(jié)果.6、C【解析】分析:在四位同學中,M同學單詞記憶效率最高,但是復習的單詞最少,T同學復習的單詞最多,但是他的單詞記憶效率最低,N,S兩位同學的單詞記憶效率基本相同,但是S同學復習的單詞最多,這四位同學在這次單詞復習中正確默寫出的單詞個數(shù)最多的應(yīng)該是S.詳解:在四位同學中,M同學單詞記憶效率最高,但是復習的單詞最少,T同學復習的單詞最多,但是他的單詞記憶效率最低,N,S兩位同學的單詞記憶效率基本相同,但是S同學復習的單詞最多,這四位同學在這次單詞復習中正確默寫出的單詞個數(shù)最多的應(yīng)該是S.故選C.點睛:考查函數(shù)的圖象,正確理解題目的意思是解題的關(guān)鍵.7、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點:1.扇形面積的計算;2.旋轉(zhuǎn)的性質(zhì).8、B【解析】

根據(jù)根的判別式的概念,求出△的正負即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數(shù)根,B.,△=36-144=-1080,∴原方程沒有實數(shù)根,C.,,△=10,∴原方程有兩個不相等的實數(shù)根,D.,△=m2+80,∴原方程有兩個不相等的實數(shù)根,故選B.【點睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關(guān)鍵.9、D【解析】

根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應(yīng)用以及方向角,正確應(yīng)用勾股定理是解題關(guān)鍵.10、C【解析】試題分析:二次函數(shù)y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數(shù)點評:本題考查二次函數(shù)的頂點坐標,考生要掌握二次函數(shù)的頂點式與其頂點坐標的關(guān)系二、填空題(本大題共6個小題,每小題3分,共18分)11、100°【解析】

由條件可證明△AMK≌△BKN,再結(jié)合外角的性質(zhì)可求得∠A=∠MKN,再利用三角形內(nèi)角和可求得∠P.【詳解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案為100°【點睛】本題主要考查全等三角形的判定和性質(zhì)及三角形內(nèi)角和定理,利用條件證得△AMK≌△BKN是解題的關(guān)鍵.12、【解析】【分析】根據(jù)反比例函數(shù)圖象上點的橫、縱坐標之積不變可得關(guān)于m的方程,解方程即可求得m的值,再由待定系數(shù)法即可求得反比例函數(shù)的解析式.【詳解】設(shè)反比例函數(shù)解析式為y=,由題意得:m2=2m×(-1),解得:m=-2或m=0(不符題意,舍去),所以點A(-2,-2),點B(-4,1),所以k=4,所以反比例函數(shù)解析式為:y=,故答案為y=.【點睛】本題考查了反比例函數(shù),熟知反比例函數(shù)圖象上點的橫、縱坐標之積等于比例系數(shù)k是解題的關(guān)鍵.13、130【解析】分析:n邊形的內(nèi)角和是因而內(nèi)角和一定是180度的倍數(shù).而多邊形的內(nèi)角一定大于0,并且小于180度,因而內(nèi)角和除去一個內(nèi)角的值,這個值除以180度,所得數(shù)值比邊數(shù)要小,小的值小于1.詳解:設(shè)多邊形的邊數(shù)為x,由題意有解得因而多邊形的邊數(shù)是18,則這一內(nèi)角為故答案為點睛:考查多邊形的內(nèi)角和公式,熟記多邊形的內(nèi)角和公式是解題的關(guān)鍵.14、-6【解析】如圖,作AC⊥x軸,BD⊥x軸,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴,∵∠OAB=60°,∴,設(shè)A(x,),∴BD=OC=x,OD=AC=,∴B(x,-),把點B代入y=得,-=,解得k=-6,故答案為-6.15、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉(zhuǎn)化,通過,與相似.這時,柳暗花明,迎刃而解.16、0【解析】原式==0,故答案為0.三、解答題(共8題,共72分)17、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設(shè)CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.18、(1)答案見解析;(2)【解析】

(1)根據(jù)三角形角平分線的定義,即可得到AD;

(2)過D作于DE⊥ABE,根據(jù)角平分線的性質(zhì)得到DE=CD=4,由三角形的面積公式即可得到結(jié)論.【詳解】解:(1)如圖所示,AD即為所求;

(2)如圖,過D作DE⊥AB于E,

∵AD平分∠BAC,

∴DE=CD=4,

∴S△ABD=AB·DE=20cm2.【點睛】掌握畫角平分線的方法和角平分線的相關(guān)定義知識是解答本題的關(guān)鍵.19、1【解析】

首先計算負整數(shù)指數(shù)冪和開平方,再計算減法即可.【詳解】解:原式=9﹣3=1.【點睛】此題主要考查了實數(shù)運算,關(guān)鍵是掌握負整數(shù)指數(shù)冪:為正整數(shù)).20、證明見解析.【解析】

由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質(zhì)進行對應(yīng)邊的轉(zhuǎn)化.21、(1)本次試點投放的A型車60輛、B型車40輛;(2)3輛;2輛【解析】分析:(1)設(shè)本次試點投放的A型車x輛、B型車y輛,根據(jù)“兩種款型的單車共100輛,總價值36800元”列方程組求解可得;(2)由(1)知A、B型車輛的數(shù)量比為3:2,據(jù)此設(shè)整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)“投資總價值不低于184萬元”列出關(guān)于a的不等式,解之求得a的范圍,進一步求解可得.詳解:(1)設(shè)本次試點投放的A型車x輛、B型車y輛,根據(jù)題意,得:,解得:,答:本次試點投放的A型車60輛、B型車40輛;(2)由(1)知A、B型車輛的數(shù)量比為3:2,設(shè)整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)題意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整個城區(qū)全面鋪開時投放的A型車至少3000輛、B型車至少2000輛,則城區(qū)10萬人口平均每100人至少享有A型車3000×=3輛、至少享有B型車2000×=2輛.點睛:本題主要考查二元一次方程組和一元一次不等式的應(yīng)用,解題的關(guān)鍵是理解題意找到題目蘊含的相等(或不等)關(guān)系,并據(jù)此列出方程組.22、(1)(2),圖形見解析.【解析】

(1)根據(jù)概率的定義即可求出;(2)先根據(jù)題意列出樹狀圖,再利用概率公式進行求解.【詳解】(1)由題意P(選中的男主持人為甲班)=(2)列出樹狀圖如下∴P(選中的男女主持人均為甲班的)=【點睛】此題主要考查概率的計算,解題的關(guān)鍵是根據(jù)題意列出樹狀圖進行求解.23、(1);(2)【解析】

(1)直接利用概率公式求出甲投放的垃圾恰好是“餐廚垃圾”的概率;(2)首先利用樹狀圖法列舉出所有可能,進而利用概率公式求出答案.【詳解】解:(1)∵垃圾要按餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四類分別裝袋,甲投放了一袋垃圾,∴甲投放了一袋是餐廚垃圾的概率是,故答案為:;(2)記這四類垃圾分別為A、B、C、D,畫樹狀圖如下:由樹狀圖知,甲、乙投放的垃圾共有16種等可能結(jié)果,其中投放的兩袋垃圾同類的有4種結(jié)果,所以投放的兩袋垃

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論