黑龍江省綏化市三校2024屆高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
黑龍江省綏化市三校2024屆高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
黑龍江省綏化市三校2024屆高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
黑龍江省綏化市三校2024屆高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
黑龍江省綏化市三校2024屆高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省綏化市三校2024屆高考沖刺模擬數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.1202.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.23.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),,當(dāng)周長(zhǎng)最小時(shí),所在直線的斜率為()A. B. C. D.4.已知a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.6.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.7.已知全集,函數(shù)的定義域?yàn)?,集合,則下列結(jié)論正確的是A. B.C. D.8.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個(gè)數(shù)為()A.1 B.2 C.3 D.49.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.10.已知等差數(shù)列的前項(xiàng)和為,且,則()A.45 B.42 C.25 D.3611.集合的子集的個(gè)數(shù)是()A.2 B.3 C.4 D.812.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A.7 B.14 C.28 D.84二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個(gè)整數(shù),則當(dāng)n最小時(shí)實(shí)數(shù)a的值為_____.14.集合,,若是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;15.已知邊長(zhǎng)為的菱形中,,現(xiàn)沿對(duì)角線折起,使得二面角為,此時(shí)點(diǎn),,,在同一個(gè)球面上,則該球的表面積為________.16.在各項(xiàng)均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點(diǎn).(1)證明:平面(2)若,求二面角的余弦值.18.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),如果方程有兩個(gè)不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.19.(12分)某企業(yè)質(zhì)量檢驗(yàn)員為了檢測(cè)生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測(cè)量,根據(jù)所測(cè)量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);(2)若從這個(gè)零件中尺寸位于之外的零件中隨機(jī)抽取個(gè),設(shè)表示尺寸在上的零件個(gè)數(shù),求的分布列及數(shù)學(xué)期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個(gè)零件尺寸的樣本頻率視為概率.現(xiàn)對(duì)生產(chǎn)線上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱個(gè).企業(yè)在交付買家之前需要決策是否對(duì)每箱的所有零件進(jìn)行檢驗(yàn),已知每個(gè)零件的檢驗(yàn)費(fèi)用為元.若檢驗(yàn),則將檢驗(yàn)出的二等品更換為一等品;若不檢驗(yàn),如果有二等品進(jìn)入買家手中,企業(yè)要向買家對(duì)每個(gè)二等品支付元的賠償費(fèi)用.現(xiàn)對(duì)一箱零件隨機(jī)抽檢了個(gè),結(jié)果有個(gè)二等品,以整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值作為決策依據(jù),該企業(yè)是否對(duì)該箱余下的所有零件進(jìn)行檢驗(yàn)?請(qǐng)說明理由.20.(12分)已知定點(diǎn),,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。(1)求曲線的方程;(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說明理由。21.(12分)在銳角三角形中,角的對(duì)邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.22.(10分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。2、C【解析】

推導(dǎo)出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.【點(diǎn)睛】本題主要考查函數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用,屬于中檔題.3、A【解析】

本道題繪圖發(fā)現(xiàn)三角形周長(zhǎng)最小時(shí)A,P位于同一水平線上,計(jì)算點(diǎn)P的坐標(biāo),計(jì)算斜率,即可.【詳解】結(jié)合題意,繪制圖像要計(jì)算三角形PAF周長(zhǎng)最小值,即計(jì)算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當(dāng)點(diǎn)P運(yùn)動(dòng)到M點(diǎn)處,三角形周長(zhǎng)最小,故此時(shí)M的坐標(biāo)為,所以斜率為,故選A.【點(diǎn)睛】本道題考查了拋物線的基本性質(zhì),難度中等.4、D【解析】

根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點(diǎn)睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.5、B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.6、C【解析】

命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.7、A【解析】

求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點(diǎn)睛】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點(diǎn)集,都由代表元決定.8、A【解析】

先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項(xiàng).【詳解】已知對(duì)于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當(dāng)時(shí),,當(dāng)即時(shí),取等號(hào),當(dāng)時(shí),函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個(gè)數(shù)為1個(gè).故選:A.【點(diǎn)睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運(yùn)用基本不等式時(shí),滿足所需的條件,屬于基礎(chǔ)題.9、C【解析】

因?yàn)椋?,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.10、D【解析】

由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.11、D【解析】

先確定集合中元素的個(gè)數(shù),再得子集個(gè)數(shù).【詳解】由題意,有三個(gè)元素,其子集有8個(gè).故選:D.【點(diǎn)睛】本題考查子集的個(gè)數(shù)問題,含有個(gè)元素的集合其子集有個(gè),其中真子集有個(gè).12、D【解析】

利用等差數(shù)列的通項(xiàng)公式,可求解得到,利用求和公式和等差中項(xiàng)的性質(zhì),即得解【詳解】,解得..故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、求和公式和等差中項(xiàng),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】

討論三種情況,a<0時(shí),根據(jù)均值不等式得到a(﹣a)≤﹣14,計(jì)算等號(hào)成立的條件得到答案.【詳解】已知關(guān)于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0時(shí),[x﹣(a)](x﹣4)<0,其中a0,故解集為(a,4),由于a(﹣a)≤﹣14,當(dāng)且僅當(dāng)﹣a,即a=﹣1時(shí)取等號(hào),∴a的最大值為﹣4,當(dāng)且僅當(dāng)a4時(shí),A中共含有最少個(gè)整數(shù),此時(shí)實(shí)數(shù)a的值為﹣1;②a=0時(shí),﹣4(x﹣4)>0,解集為(﹣∞,4),整數(shù)解有無窮多,故a=0不符合條件;③a>0時(shí),[x﹣(a)](x﹣4)>0,其中a4,∴故解集為(﹣∞,4)∪(a,+∞),整數(shù)解有無窮多,故a>0不符合條件;綜上所述,a=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了解不等式,均值不等式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.14、②③【解析】

根據(jù)對(duì)稱性,只需研究第一象限的情況,計(jì)算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對(duì)稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,故所在的直線的傾斜角為,,故:,解得,此時(shí),,此時(shí).故答案為:②③.【點(diǎn)睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,利用對(duì)稱性是解題的關(guān)鍵.15、【解析】

分別取,的中點(diǎn),,連接,由圖形的對(duì)稱性可知球心必在的延長(zhǎng)線上,設(shè)球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計(jì)算可得;【詳解】如圖,分別取,的中點(diǎn),,連接,則易得,,,,由圖形的對(duì)稱性可知球心必在的延長(zhǎng)線上,設(shè)球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點(diǎn)睛】本題考查多面體的外接球的計(jì)算,屬于中檔題.16、【解析】

利用等差中項(xiàng)的性質(zhì)和等比數(shù)列通項(xiàng)公式得到關(guān)于的方程,解方程求出代入等比數(shù)列通項(xiàng)公式即可.【詳解】因?yàn)椋傻炔顢?shù)列,所以,由等比數(shù)列通項(xiàng)公式得,,所以,解得或,因?yàn)?,所以,所以等比?shù)列的通項(xiàng)公式為.故答案為:【點(diǎn)睛】本題考查等差中項(xiàng)的性質(zhì)和等比數(shù)列通項(xiàng)公式;考查運(yùn)算求解能力和知識(shí)綜合運(yùn)用能力;熟練掌握等差中項(xiàng)和等比數(shù)列通項(xiàng)公式是求解本題的關(guān)鍵;屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解析】

(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點(diǎn)建平面直角坐標(biāo)系,求出平面平與平面的法向量,,最后求得二面角的余弦值為.【詳解】解:(1)連結(jié)∵,且是的中點(diǎn),∴∵平面平面,平面平面,∴平面.∵平面,∴又為菱形,且為棱的中點(diǎn),∴∴.又∵,平面∴平面.(2)由題意有,∵四邊形為菱形,且∴分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則設(shè)平面的法向量為由,得,令,得取平面的法向量為∴二面角為銳二面角,∴二面角的余弦值為【點(diǎn)睛】處理線面垂直問題時(shí),需要學(xué)生對(duì)線面垂直的判定定理特別熟悉,運(yùn)用幾何語言表示出來方才過關(guān),一定要在已知平面中找兩條相交直線與平面外的直線垂直,才可以證得線面垂直,其次考查了學(xué)生運(yùn)用空間向量處理空間中的二面角問題,培養(yǎng)了學(xué)生的計(jì)算能力和空間想象力.18、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見解析.【解析】

(1)求出,對(duì)分類討論,分別求出的解,即可得出結(jié)論;(2)由(1)得出有兩解時(shí)的范圍,以及關(guān)系,將,等價(jià)轉(zhuǎn)化為證明,不妨設(shè),令,則,即證,構(gòu)造函數(shù),只要證明對(duì)于任意恒成立即可.【詳解】(1)的定義域?yàn)镽,且.由,得;由,得.故當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)由(1)知當(dāng)時(shí),,且.當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)時(shí),直線與的圖像有兩個(gè)交點(diǎn),實(shí)數(shù)t的取值范圍是.方程有兩個(gè)不等實(shí)根,,,,,,即.要證,只需證,即證,不妨設(shè).令,則,則要證,即證.令,則.令,則,在上單調(diào)遞增,.,在上單調(diào)遞增,,即成立,即成立..【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)單調(diào)性、極值、零點(diǎn)、不等式證明,構(gòu)造函數(shù)函數(shù)是解題的關(guān)鍵,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.19、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗(yàn),理由見詳解.【解析】

(1)計(jì)算的頻率,并且與進(jìn)行比較,判斷中位數(shù)落在的區(qū)間,然后根據(jù)頻率的計(jì)算方法,可得結(jié)果.(2)計(jì)算位于之外的零件中隨機(jī)抽取個(gè)的總數(shù),寫出所有可能取值,并計(jì)算相對(duì)應(yīng)的概率,列出分布列,計(jì)算期望,可得結(jié)果.(3)計(jì)算整箱的費(fèi)用,根據(jù)余下零件個(gè)數(shù)服從二項(xiàng)分布,可得余下零件個(gè)數(shù)的期望值,然后計(jì)算整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值,進(jìn)行比較,可得結(jié)果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數(shù)落在假設(shè)尺寸中位數(shù)為所以所以這個(gè)零件尺寸的中位數(shù)(2)尺寸在的個(gè)數(shù)為尺寸在的個(gè)數(shù)為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對(duì)余下的零件進(jìn)行檢驗(yàn)則整箱的檢驗(yàn)費(fèi)用為(元)余下二等品的個(gè)數(shù)期望值為如果不對(duì)余下的零件進(jìn)行檢驗(yàn),整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值為(元)所以,所以可以不對(duì)余下的零件進(jìn)行檢驗(yàn).【點(diǎn)睛】本題考查頻率分布直方圖的應(yīng)用,掌握中位數(shù),平均數(shù),眾數(shù)的計(jì)算方法,中位數(shù)的理解應(yīng)該從中位數(shù)開始左右兩邊的頻率各為0.5,考驗(yàn)分析能力以及數(shù)據(jù)處理,屬中檔題.20、(1);(2)存在定點(diǎn),見解析【解析】

(1)設(shè)動(dòng)點(diǎn),則,利用,求出曲線的方程.(2)由已知直線過點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達(dá)定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【詳解】解:(1)設(shè)動(dòng)點(diǎn),則,,,即,化簡(jiǎn)得:。由已知,故曲線的方程為。(2)由已知直線過點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論