小學(xué)四年級行程問題練習(xí)與答案_第1頁
小學(xué)四年級行程問題練習(xí)與答案_第2頁
小學(xué)四年級行程問題練習(xí)與答案_第3頁
小學(xué)四年級行程問題練習(xí)與答案_第4頁
小學(xué)四年級行程問題練習(xí)與答案_第5頁
已閱讀5頁,還剩59頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

相遇問題1、AB兩地相距360千米,客車與貨車從A、B兩地相向而行,客車先行1小時,貨車才開出,客車每小時行60千米,貨車每小時行40千米,客車開出后幾小時與貨車相遇?相遇地點(diǎn)距B地多遠(yuǎn)分析:由題意可知:客車先行1小時,貨車才開出,先求出剩下的路程,再根據(jù)路程÷速度和=相遇時間,求出相遇時間再加上1小時即可,然后用總路程減去客車4小時行駛的路程問題即可得到解決.=300÷100+1,=3+1,=360-240,=120(千米)答:客車開出后4小時與貨車相遇,相遇地點(diǎn)距B地120千米.2、甲、乙兩車同時從A、B兩地出發(fā)相向而行,兩車在離B地64千米處第一次相遇.相遇后兩車仍以原速繼續(xù)行駛,并且在到達(dá)對方出發(fā)點(diǎn)后,立即沿原路返回,途中兩車在距A地48千米處第二次相遇,A、B之間的距離是多少?解答:【分析】甲、乙兩車共同走完一個AB全程時,乙車走了64千米,從上圖可以看出:它們到第二次相遇時共走了3個AB全程,因此,我們可以理解為乙車共走了3個64千米,再由上圖可知:減去一個48千米后,正好等于一個AB全程.AB間的距離是64×3-48=144(千米)3、一個圓的周長為1.26米,兩只螞蟻從一條直徑的兩端同時出發(fā)沿圓周相向爬行.這兩只螞蟻每秒分別爬行5.5厘米和3.5厘米.它們每爬行1秒,3秒,5秒…(連續(xù)的奇數(shù)),就調(diào)頭爬行.那么,它們相遇時已爬行的時間是多少秒?分析:這道題難在螞蟻爬行的方向不斷地發(fā)生變化,那么如果這兩只螞蟻都不調(diào)頭爬行,相遇時它們已經(jīng)爬行了多長時間呢?非常簡單,由于半圓周長為:1.26÷2=0.63米=63厘米,所以可列式為:1.26÷2÷(5.5+3.5)=7(秒);我們發(fā)現(xiàn)螞蟻爬行方向的變化是有規(guī)律可循的,它們每爬行1秒、3秒、5秒、…(連續(xù)的奇數(shù))就調(diào)頭爬行.每只螞蟻先向前爬1秒,然后調(diào)頭爬3秒,再調(diào)頭爬5秒,這時相當(dāng)于在向前爬1秒的基礎(chǔ)上又向前爬行了2秒;同理,接著向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,這就相當(dāng)于一共向前爬行了1+2+2+2=7(秒),正好相遇.4、兩汽車同時從A、B兩地相向而行,在離A城52千米處相遇,到達(dá)對方城市后立即以原速沿原路返回,在離A城44千米處相遇。兩城市相距()千米A.200B.150C.120D.100選擇D。解析:第一次相遇時兩車共走一個全程,第二次相遇時兩車共走了兩個全程,從A城出發(fā)的汽車在第二次相遇時走了52×2=104千米,從B城出發(fā)的汽車走了52+44=94千米,故兩城間距離為(104+96)÷2=100千知識要點(diǎn)提示:甲從A地出發(fā),乙從B地出發(fā)相向而行,兩人在C地相遇,相遇后甲繼續(xù)走到B地后返回,乙繼續(xù)走到A地后返回,第二次在D地相遇5、甲乙兩車同時從A、B兩地相向而行,在距B地54千米處相遇,它們各自到達(dá)對方車站后立即返回,在距A地42千米處相遇。請問A、B兩地相距多少千米?A.120B.100C.90D.80選擇A。解析:設(shè)兩地相距x千米,由題可知,第一次相遇兩車共走了x,第二次相遇兩車共走了2x,由于速度不變,所以,第一次相遇到第二次相遇走的路程分別為第一次相遇的二倍,即54×2=x-54+42,得出x=120。6、兩汽車同時從A、B兩地相向而行,在離A城52千米處相遇,到達(dá)對方城市后立即以原速沿原路返回,在離A城44千米處相遇。兩城市相距()千米D.100選擇D。解析:第一次相遇時兩車共走一個全程,第二次相遇時兩車共走了兩個全程,從A城出發(fā)的汽車在第二次相遇時走了52×2=104千米,從B城出發(fā)的汽車走了52+44=94千米,故兩城間距離為(104+96)÷2=1003、A,B兩地相距540千米。甲、乙兩車往返行駛于A,B兩地之間,都是到達(dá)一地之后立即邁回,乙車較甲車快。設(shè)兩輛車同時從A地出發(fā)后第一次和第二次相通都在途中P地。那么兩車第三次相進(jìn)為止,乙車共走了多少于米?73、A、B兩地相延540干米、甲、乙兩車往適行駛于A,B兩地之間,都是到達(dá)一地之后立即返園,乙車較甲車快。設(shè)兩輛車同時從A地出發(fā)后第一次和第二次相遇都在途中P地。那么兩車第三次相通為止。乙車共走了多少干米?解:根據(jù)總結(jié):第一次相遇,甲乙總共走了2個全程,第二次相遇,甲乙總共走了4個全程,乙比甲快,相遇又在P點(diǎn)。所以可以根據(jù)總結(jié)和畫圖推出:從第一次相遇到第二次相遇,乙從第一個P點(diǎn)到第二個P點(diǎn)。路程正好是第一次的路程。所以假設(shè)一個全程為3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份,這樣根據(jù)總結(jié):2.個全程里乙走了(540÷3)×4=180×4=720干米,乙總共走了720×3=2160于米。駛,并且在到達(dá)對方出發(fā)點(diǎn)后,立即沿原路返回,途中兩車在距A地48千米處第二次相遇,A、B之間的距離是多少?共走了3個AB全程,因此,我們可以理解為乙車共走了3個64千米,再由上圖可知:減去一個48千米后,正好等于一個AB全程.AB間的距離是64×3-48=144(千米)乙后2分鐘又遇到甲,A、B兩地相距多少米?10、解答:丙遇到乙后此時與甲相距(50+70)×2=240米,也是甲乙的路程差,所以240÷(60-50)=24相距(70+60)×24=3120米.10、甲乙兩隊學(xué)生從相隔18千米的兩地同時出發(fā)相向而行.一個同學(xué)騎自行車以每小時15千米的速度在兩隊之間不停地往返聯(lián)絡(luò).甲隊每小時行5千米,乙隊每小時行4千米.兩隊相遇時,騎自行車的同學(xué)共行多少千分析:甲隊每小時行5千米,乙對每小時行4千米,兩地相距18千米,根據(jù)路程÷速度和=相遇時間可知,兩自行車的學(xué)生共行:15×2=30千米.解答:解:18÷(4+5)×15=30(千米).答:兩隊相遇時,騎自行車的學(xué)生共行30千米.點(diǎn)評:明確兩隊相遇時,騎自行車的學(xué)生始終在運(yùn)動,然后根據(jù)時間×速度=所行路程求出騎自行車的學(xué)生行的路程是完成本題的關(guān)鍵.距A地3km,相遇之后繼續(xù)行走,均到達(dá)對方出發(fā)點(diǎn)后立即返回,第二次相遇點(diǎn)距B地2km。如此往復(fù)。(此處的相遇指的是迎面相遇)(2)求第29次相遇點(diǎn)與第30次相遇點(diǎn)之間的距離。甲和乙第二次相遇,通過行程圖可以看出甲乙共走了3個全程,則甲走了3x3=9km則A、B兩地相距:9-2=7km12、甲乙二人分別從A、B兩地同時出發(fā),并在兩地間往返行走。第一次二人在距離B點(diǎn)400米處相遇,第二次二人又在距離B點(diǎn)100米處相遇,問兩地相距多少米?答案:(1)第一次二人在距離B點(diǎn)400米處相遇.說明第一次相遇時乙行400米.(2)甲、乙從出發(fā)到第二次相遇共行3個全程。從第一次相遇后時到第二次相遇他們共行2個全程。在這2個全程中甲行400+100=500米。說明甲在每個全程中行500/2=250米。(3)因此在第一次相遇時(一個全程)250+400=650米答:兩地相距650米?;疖囘^橋問題是行程問題的一種,也有路程、速度與時間之間的數(shù)量關(guān)系,同時還涉及車長、橋長等問題?;緮?shù)量關(guān)系是火車速度×?xí)r間=車長+橋長例1—列火車長150米,每秒鐘行19米。全車通過長800米的大橋,需要多少時間?分析列車過橋,就是從車頭上橋到車尾離橋止。車尾經(jīng)過的距離=車長+橋長,車尾行駛這段路程所用的時解:(800+150)÷19=50(秒)答:全車通過長800米的大橋,需要50秒。一列火車長200米,它以每秒10米的速度穿過200米長的隧道,從車頭進(jìn)入隧道到車尾離開隧道共需要多少秒?例2—列火車長200米,以每秒8米的速度通過一條隧道,從車頭進(jìn)洞到車尾離洞,一共用了40秒。這條隧道長多少米?分析先求出車長與隧道長的和,然后求出隧道長。火車從車頭進(jìn)洞到車尾離洞,共走車長+隧道長。這段路程是以每秒8米的速度行了40秒。解:(1)火車40秒所行路程:8×40=320(米)(2)隧道長度:320-200=120(米)答:這條隧道長120米。一支隊伍1200米長,以每分鐘80米的速度行進(jìn)。隊伍前面的聯(lián)絡(luò)員用6分鐘的時間跑到隊伍末尾傳達(dá)命令。問聯(lián)絡(luò)員每分鐘行多少米?例3—列火車長119米,它以每秒15米的速度行駛,小華以每秒2米的速度從對面走來,經(jīng)過幾秒鐘后火車從小華身邊通過?分析本題是求火車車頭與小華相遇時到車尾與小華相遇時經(jīng)過的時間。依題意,必須要知道火車車頭與小華相遇時,車尾與小華的距離、火車與小華的速度和。解:(1)火車與小華的速度和:15+2=17(米/秒)(2)相距距離就是一個火車車長:119米(3)經(jīng)過時間:119÷17=7(秒)答:經(jīng)過7秒鐘后火車從小華身邊通過。一人以每分鐘60米的速度沿鐵路步行,一列長144米的客車對面開來,從他身邊通過用了8秒鐘,列車的速度是每秒多少米?例4—列火車通過530米的橋需40秒鐘,以同樣的速度穿過380米的山洞需30秒鐘。求這列火車的速度是每秒多少米?車長多少米?分析與解火車40秒行駛的路程=橋長+車長;火車30秒行駛的路程=山洞長+車長。比較上面兩種情況,由于車長與車速都不變,所以可以得出火車40-30=10秒能行駛530-380=150米,由此可以求出火車的速度,答:這列火車的速度是每秒15米,車長70米。一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的隧道需要30秒.這列火車的速度和車身長各是多少?例5某人沿著鐵路邊的便道步行,一列客車從身后開來,在身旁通過的時間是15秒鐘,客車長105米,每小時速度為28.8千米.求步行人每小時行多少千米?分析一列客車從身后開來,在身旁通過的時間是15秒鐘,實(shí)際上就是指車尾用15秒鐘追上了原來與某人105米的差距(即車長),因?yàn)檐囬L是105米,追及時間為15秒,由此可以求出車與人速度差,進(jìn)而求再求人的解:(1)車與人的速度差:105÷15=7(米/秒)=25.2(千米/小時)(2)步行人的速度:28.8-25.2=3.6(千米/小時)答:步行人每小時行3.6千米。1.少先隊員346人排成兩路縱隊去參觀畫展.隊伍行進(jìn)的速度是23米/分,前面兩人都相距1米.現(xiàn)在隊伍要通過一座長702米的橋,整個隊伍從上橋到離橋共需要幾分鐘?=1×(173-1),=172(米);過橋的時間:=874÷23,=38(分鐘).答:整個隊伍從上橋到離橋共需要38分鐘.考點(diǎn):列車過橋問題;植樹問題.1、一個人站在鐵道旁,聽見行近來的火車鳴汽笛聲后,再過57秒鐘火車經(jīng)過他面前.已知火車汽笛時離他1360到這一站的那一列火車至少需要停車多少分鐘?225千米?25千米*15千米230千米?AB?C?D?E米用了(57+4=)61秒,將距離除以時間可求出火車的速度。1360÷(57+1360÷340)=1360÷61≈22(米)2、火車=28.8×1000÷3600=8(米/秒),人步行15秒的距離=車行15秒的距離-車身長。從圖中可知,AE的距離是:225+25+15+230=495(千米),兩車相遇所用的時間是:495÷(60+50)=4.5(小時),相遇處距A站的距離是:60×4.5=270(千米),而A,D兩站的距離為:225+25+15=265(千米)由于270千米>265千因?yàn)橄嘤鎏庪xD站距離為270-265=5(千米),那么,先到達(dá)D站的火車至少需要等待一人每分鐘60米的速度沿鐵路步行,一列長144米的客車對面而來,從他身邊通過用了8秒,求列車的速度?解答:【可以看成一個相遇問題,總路程就是車身長度,所以火車與人的速度之和是144÷8=18米,而人的速度是每分鐘60米,也就是每秒鐘1米,所以火車的速度是每秒鐘18-1=17米,兩列火車,一列長120米,每秒鐘行20米;另一列長160米,每秒行15米,兩車相向而行,從車頭相遇到車尾離開需要幾秒鐘?解答:如圖:從車頭相遇到車尾離開,兩列火車一共走的路程就是兩輛火車的車身長度之和,即120+160=280米,所以從車頭相遇到車尾離開所用時間為280÷(20+15)=8秒塊車燥車所走據(jù)程快車所走路程V兩車所患路程和兩列車的年身之和所以速度差是90÷10=9米/秒,因此車速是2+9=11米/秒。填空題1.一列火車長200米,它以每秒10米的速度穿過200米長的隧道,從車頭進(jìn)入隧道到車尾離開隧道共需要 時間.5.一列火車長700米,以每分鐘400米的速度通過一座長900米的大橋.從車頭上橋到車尾離橋要分鐘.6.一支隊伍1200米長,以每分鐘80米的速度行進(jìn).隊伍前面的聯(lián)絡(luò)員用6分鐘的時間跑到隊伍末尾傳達(dá)命令.問聯(lián)絡(luò)員每分鐘行米7.一列火車通過530米的橋需40秒鐘,以同樣的速度穿過380米的山洞需30秒鐘,求這列火車的速度是 10.鐵路沿線的電桿間隔是40米,某旅客在運(yùn)行的火車中,從看到第一根電線桿到看到第51根電線桿正好是21.火車過隧道,就是從車頭進(jìn)隧道到車尾離開隧道止.如圖所示,火車通過隧道時所行的總距離為:隧道長+車答:從車頭進(jìn)入隧道到車尾離開共需40秒.人步行15秒鐘走的距離=車15秒鐘走的距離-車身長.=3.6(千米/小時)=18.人的速度=60米/分=1米/秒.車的速度=18-1乙速×2=15-5×2,(4)汽車從離開甲到離開乙之間的時間是多少?5.從車頭上橋到車尾離橋要4分鐘.1200-480=720(米)720÷6=120(米/分)8.1034÷(20-18)=517(秒)10.40×(51-1)÷2×60÷1000=60(千米/小時)解答題速度.短.先到這一站的那一列火車至少需要停車多少分鐘?答案1.火車?yán)褧r離這個人1360米.因?yàn)槁曀倜棵敕N340米,所以這個人聽見汽笛聲時,經(jīng)過了(1360÷340=)41360÷(57+1360÷340)=1360÷61≈22(米)2.火車=28.8×1000÷3600=8(米/秒)人步行15秒的距離=車行15秒的距離-車身長.1×60×60=3600(米/小時)=3.6(千米/小時)3.人8秒走的距離=車身長-車8秒走的距離等待時間最短.從圖中可知,AE的距離是:225+25+15+230=495(千米)兩車相遇所用的時間是:495÷(60+50)=4.5(小時)而A,D兩站的距離為:225+25+15=265(千米)小時=11分鐘1.某列車通過250米長的隧道用25秒,通過210米的鐵橋用23秒,該列車與另一列長320米,速度為每小時行64.8千米的火車錯車時需要()秒。公式:(車長+橋長)/火車車速=火車過橋時間速度為每小時行64.8千米的火車,每秒的速度為18米/秒,某列車通過250米長的隧道用25秒,通過210米的鐵橋用23秒,則該火車車速為:(250-210)/(25-23)=20米/秒路程差除以時間差等于火車車速.該火車車長為:20*25-250=250(米)或20*23-210=250(米)所以該列車與另一列長320米,速度為每小時行64.8千米的火車錯車時需要的時間為(320+250)/(18+20)=15(秒)2.一列火車長160m,勻速行駛,首先用26s的時間通過甲隧道(即從車頭進(jìn)入口到車尾離開口為止),行駛了100km后又用16s的時間通過乙隧道,到達(dá)了某車站,總行程100.352km。求甲、乙隧道的長?那么乙隧道的長度是(100.352-100)(單位是千米!)*1000-x=(352-x)那么解出x=256那么乙隧道的長度是352-256=96火車過橋問題的基本公式(火車的長度+橋的長度)/時間=速度然后在乙身旁開過,用了17秒,已知兩人的步行速度都是3.6千米/小時,這列火車有多長?分析:從題意得知,甲與火車是一個相遇問題,兩者行駛路程的和是火車的長.乙與火車是一個追及問題,兩者行駛路程的差是火車的長,因此,先設(shè)這列火車的速度為x米/秒,兩人的步行速度3.6千米/小時=1米/秒,所以根據(jù)甲與火車相遇計算火車的長為(15x+1×15)米,根據(jù)乙與火車追及計算火車的長為(17x-1×17)米,兩種運(yùn)算結(jié)果火車的長不變,列得方程為故火車的長為17×16-1×17=255米流水行船順?biāo)俣?船速-水速,即V順=V船+V水;船速=(順?biāo)俣?逆水速度)÷2,即V船=(V順+V道)÷2:水速=《順?biāo)俣?理水速度》÷2;即V水=<V順V逆)÷2:(1)從上游到下游為順?biāo)?,從下游到上游為逆水而?2)錄雨只改變水速,不改變船速;船的性能變化只改變船速,不改變水速(3)順流而下返回時是逆水,逆流而上返回時是順?biāo)魉写械南嘤雠c追及間題,不考電水速的影響1、A、B兩港相距140千米,一艘客船在兩港間航行,順流用去7小時,逆流用去10小時,則輪船的船速和水速分別是多少千米/小時?1、A、B兩港相距140千米,一艘客船在兩港間航行,順流用去7小時,逆流用去10小時,則輪船的船速和水速分別是多少千米/小時?[答案]船速:17千米/小時,水速:3千米/小時[分析]順流速度:140-7=20(千米/小時);逆流速度:140+10=14(千米/小時);船速:(20+14)÷2=17(千米/小時);水速:(20-14)+2=3(千米/小時)2、甲船逆水航行360干米需18小時,返回原地需10小時,乙船逆水航行同樣一段距離需15小時,返回原地需()小時。2、甲船逆水航行360千米需18小時,返回原地需10小時,乙船逆水航行同樣一段距離需15小時,返回原地需()小時。[答案]9小時[分析]甲船逆流速度:360÷18=20(千米/小時),甲船順流速度:360=10=36(千米/小時),水速:(36-20)+2=8(千米/小時),乙船逆流速度;360=15=24(千米/小時),乙船順流速度:24+8×2=40(千米/小時),乙船順流時間:360÷40=9(小時)。3、一艘輪船往返于相距240千米的甲、乙兩港之間,逆水速度是每小時18千米,順?biāo)亩嗌傩r?3、一艘輪船往返于相距240千米的甲、乙兩港之間,逆水速度是每小時18千米,順?biāo)乃俣仁敲啃r26千米,一艘汽艇的速度是每小時20千米,這艘汽艇往返于兩港之間共需多少小時?[答案]25小時[分析]水速:(26-18)+2=4(千米/小時),汽艇順流速度:20+4=24(千米/小時),汽艇順(小時),總時間:10+15=25(小時)4、甲、乙兩船在靜水中的速度分別為每小時36千米和每小時28千米,今從相隔192干米的兩港同時相對行駛,甲船逆水而上,乙船順?biāo)?,那?)小時后兩船相遇。4、甲、乙兩船在靜水中的速度分別為每小時36千米和每小時28千米,今從相隔192千米的兩港同時相對行駛,甲船逆水而上,乙船順?biāo)?,那?)小時后兩船相遇。[分析]192+(36+28)=3(小時)5、兩碼頭相距231千米,輪船順?biāo)旭傔@段路程需要11小時,逆水比順?biāo)啃r少行105、兩碼頭相距231千米,輪船順?biāo)旭傔@段路程需要11小時,逆水比順?biāo)啃r少行10千米,那么行駛這段路程逆水比順?biāo)枰嘤?)小時。[答案]10小時[分析]順流速度:231=11=21(千米/小時),逆流速度:21-10=11(千米/小時),逆水時間:231-11=21(小時),逆水時間-順?biāo)畷r間:21-11=10(小時)6、一艘輪船從A地出發(fā)去B地為順流而下,需10小時;從B地返回A地為逆流而上,需15小時,水流速度為每小時10千米,那么A、B兩地間的航程有多少千米?[分析]順流時間:10小時,逆流時間;15小時,假定A、B兩地間的航程為30份,順流速度:30÷10=3(份/小時),逆流速度:30+15=2(份/小時),水流速度:(3-2)=2=0.5(份/小時),正好為10千米/小時,說明每份正好是10-0.5=20(千米),A、B兩地間的航程為7、一艘輪船順流航行140千米,逆流航行80千米,共用了15小時,后來順流航行60干米,逆流航行120千米,也用了15小時,求水流的速度。7、一艘輪船順流航行140千米,逆流航行80千米,共用了15小時,后來順流航行60千米,逆流航行120千米,也用了15小時,求水流的速度。[分析]順流140千米時間+逆流80千米時間=順流60千米時間+逆流120千米時間,可知,順流80千米時間=逆流40千米時間,則順流2千米時間=逆流1千米時間,順流140千米時間+逆流80千米時間=逆流70千米時間+逆流80千米時間=逆流150千米時間,正好為15小時,逆水速度為150-15=10(千米/小時),順流60千米時間+逆流120千米時間=順流60千米時間+順流240千米時間=順流300千米時間,正好是15小時,順流速度為300-15=20(千米/小時),水速:(20-10)-2=5(千米/小時)。1.大沙河上、下游相距120千米,每天定時有甲、乙兩艘船速相同的客輪從上、下游同時出發(fā),面對面行駛.假定這兩艘客輪的船速都是每小時25千米,水速是每小時5千米,則兩艘客輪在出發(fā)后幾小時相遇?解答:解:120÷(25-5+25+5),=2.4(小時).答:兩艘客輪在出發(fā)后2.4小時相遇。甲、乙兩個港口之間的水路長300千米,一只船從甲港到乙港,順?biāo)?小時到達(dá),從乙港返回甲港,逆水6小解答:由題意可知,船在順?biāo)械乃俣仁?00÷5=60千米/小時,在逆水中的速度是300÷6=50千米/小時,所以靜水速度是(60+50)÷2=55千米/小時,水流速度是(60-50)÷2=5千米/小時。例5A、B兩碼頭間河流長90千米,甲乙兩船分別從A、B碼頭,同時啟航,如果相向而行,3小時相遇,如果同向而行,9小時,甲追上乙,求兩船在靜水中的速度?分析V甲順=V甲船+V水V乙順=V乙船+V水V乙逆=V乙船-V水相遇速度和=V甲順+V乙逆=V甲船+V水+V乙船-V水=V甲船+V乙船速度和=路程和÷相遇時間追及速度差=V甲順-V乙順=V甲船+V水-(V乙船+V水)=V甲船+V水-V乙船-V水=V甲船-V乙船速度差=路程差÷追及時間V甲船+V乙船=30V甲船-V乙船=10得到V甲船=20(Km/h)V乙船=10(Km/h)答:甲船的速度為20千米每小時,乙船的速度為10千米每小時。5、在流水中的相遇和追及,水速不影響相遇和追及時間例5A、B兩碼頭間河流長90千米,甲乙兩時啟航,如果相向而行,3小時相遇,如果同向而行,9小時,甲追上乙,求兩船在靜水中的速度?分析V甲船=20(Km/h)答:甲船的速度為20千米每小時,乙船的速度為10千米每小時。3、往返兩港口或上下游,路程不變例3一條木船在靜水中的速度為12千米每小時,它在長45千米的②知二求二,就能算出V船、V水V順V逆=s÷t逆=45÷5=9(Km/h)V水=V船-V逆=12-9=3(Km/h)V順=V船+V水=12+3=15(Km/h)t順=s÷V順=45÷15=3(h)答:從上游到下游需要3小時。Vm(cm/n)Ve(km/n)Ve(km/h)UD5上2飾0 1例2甲乙兩港水路長80千米,一艘船從甲港開往乙港,順流8小時到達(dá),從乙港開往甲港。逆流10小時達(dá)到,求船在靜水中的速度和水速?V順=S÷t順=80÷8=10(Km/h)逆)÷2=(10+8)÷2=9(Km/h)逆)÷2=(10-8)÷2=1(Km/h)二、流水中各速度間關(guān)系少年宮的傳送帶人站在傳送帶上:如果傳送帶往前,人也往前走,會感覺走得更如果傳送帶往后,人往前走,就特別吃力,而且走不快。直線上的速度:同向,則速度相加,反向,則速度相減(大速-小船不啟動,但在河流中,也會順?biāo)鴦?,因?yàn)橛兴?。船順流而下,比在靜水中的速度快,逆流而上,比靜水中慢,也是因?yàn)樗俚挠绊?。流水的速?V水船在靜水中的速度=V船。船在順?biāo)械乃俣?V順船在逆水中的速度=V逆V順=V船+V水得到V船=(V順+V逆)÷2例1:一艘客輪,在平靜的湖面上的速度是20千米每小時,在水速為(1)順?biāo)叫械乃俣仁嵌嗌?(2)順?biāo)叫?8千米,需要幾小時?(3)逆水航行的速度是多少?(4)逆水航行5小時,行駛了多遠(yuǎn)路程?水=88÷22=4(h)順=20+2=22(Km/h)(3)V逆=V船-V水=20-2=18(Km/h)(4)S=V逆×t順=18×5=90(Km)答:順?biāo)俣葹?2千米每小時,需要4小時,逆水速度為18千米每小時,逆水5小時行駛了90千米。一條河上有甲、乙兩個碼頭,甲在乙的上游60千米處,客船別船分別從甲、乙兩碼頭出發(fā)也游行駛,兩船的靜水速度相回始終保持不變.客船出發(fā)睛一物品從船上鹿物距客船5千米,客船在行駛20千米括南游追趕此物,追上靜好氮船相遇,求水流的速度,【解析】此題乃巔峰挑戰(zhàn),比較生猛,南們可以嘗試做一下!在初步階段,復(fù)雜的行程問題必須要學(xué)著畫圖去分析,此題確們自己學(xué)著畫一下。10分鐘客船物體拉開5千米,一個小就走了5×6=30km,則兩者的速度和30km/h即V+Ym=Vg+V水=V=30kmh,所以兩皺船的靜水速度都是30km'h貨船與物品相遇所需萌:60÷(V+Vm)=60÷(V+VA)=60÷V=2小時貨船與物品相遇能與客船相遇,即兩船經(jīng)過2小后相遇,由于兩船靜水速度相同所以客船行駛20千米后兩船仍相距60千米??痛ê蠓祷嘏c貨船相遇所需瞞:60+(Vg+Vm)=60÷(30+30)=1小時客船調(diào)頭后經(jīng)過1小畸船相遇.則客船逆水行駛20千米的時為2-1=1小時客船逆水速度:20÷1=20km/h甲、乙兩船在靜水中速度分別為每小明千米翻小時千米,兩船從某河相距336千米向行,幾小糖遇?如果同向行,甲船在前,乙船在后幾小時后船追上甲船?【解析】追及崗:336÷(32-24)=42小時若AB兩碼頭間河流長為90千米,甲、乙兩船分別從A、B碼頭同附航,如果相向行3小牌遇,如果同向行15小冊船追上乙船,求兩船在靜水中的速度。和題一樣,與水速無關(guān),根據(jù)相遇趣及基本公或可得出:所以甲的速度為(30+6)+2=18km/h,乙的速度為(30-6)÷2=12km/h甲乙兩港相距120km,一艘船A往返兩港需要10h,順流航行比逆流航行少花了2h,現(xiàn)有另一船B靜水速度是35km/h,求船B往返兩港需要的時是多少?【解析】設(shè)順流航行需要x,則有2x+2=10,解得x=4,逆水航行需要4+2=6小時A的順?biāo)俣龋?20÷4=30km/hA的逆水速度:120=6=20km/h水速一直不變,所以B船順流航行所需廚:120÷(35+5)=3小時逆流航行所需謝:120÷(35-5)=4小時往返需要4+3=7小時兩個碼頭相距192千米,一艘汽腿順?biāo)型耆绦枰?小時已知這條河的水流速度為4千米/小時求逆水行完全程需幾小時順?biāo)俣龋?92÷8=24km/h逆水航行所需畸:192÷16=12h一艘每小時25千米的客輪,在大運(yùn)河中順?biāo)叫?40千米,水速是每小需要行幾個小時【解析】順?biāo)?,順?biāo)俣葹椋?5+3=28km/h所用畸為:140÷28=5小時—29—甲乙兩艘游艇,靜水中甲乙游艇每小每行3.3千米、2.1千米,現(xiàn)在甲乙游艇于同刻相由發(fā)甲艇從下游上行,乙艇從相距27千米的上游下行,兩艇于途中相遇后又經(jīng)過4小時甲艇到達(dá)一艇的出燃,求水流的速度.【解析】甲乙兩艇相南行,相遇問題,水中相遇與水速無關(guān),所以得出它們從出發(fā)到相遵所用的時甲艇相遇后再經(jīng)過4小勤達(dá)乙地,所以甲艇行完全程用了4+5=9小時甲下游上行,所以得出甲艇的逆水速度:27÷9=3(km/h)總結(jié):流水行船中相遇與追及與水速無關(guān)是指兩者的速度差疆度和隨水速的改變而改變某人暢游長江,逆流而上,在A處丟了一只水壺,他前又游了20分鐘后才魏水壺丟失了,立即返回追尋,在離A處2千米的地方追到,則他返回尋水壺用了多少時?【解析】對于過程比較復(fù)雜的行程間題,必須要畫圖進(jìn)行分析,如圖在A處去了水壺,在B處發(fā)現(xiàn)丟失并立即返回追尋,在C處追到.此人丟了水壺后,逆流而上20分鐘,水壺則順流而下(速度為水速),也行走20分鐘,所此人逆水而上20分鐘之后,立即回追,根據(jù)路程差=速度差×睛,路程差為此時者之間的距離:201V==(Va+V)-V=Y總結(jié);類似此類問題,丟了多長間,就要找多長阿。仔細(xì)思考一下是不是也與水速無關(guān)呢?船往返子相距180千米的兩港之間,順?biāo)滦栌?0小時逆水而上需用15小時由于暴雨唐速增加,該船順?biāo)兄恍枰?小時那么逆水而行需要幾小時本題中要注意一點(diǎn)就是船的速度在系雨前最而后都是一樣的,根據(jù)題目中的條件可得出:系雨前順?biāo)俣龋?80÷10=18(km/h)系雨前逆水速度:180÷15=12(km/h)得出船速為:(18+12)÷2=15(kn/h)系雨后順?biāo)葹椋?80÷9=20(km/h)泉雨后水的速度:20-5=15(km/h)逆水而行所用瞞:180÷(15-5)=18小時3、相遇問題:路程弄速度和的二、流水行船基本公式V=Y+YVg=V-VV=(Vm+V@)÷2Vx=(Ym-V)+2三、流水行船中的相遇與追及兩船在河流中相商出,一定會出現(xiàn)一船順流、一船逆流,求兩船的速度和時水消.所以,兩船速度輸水速無關(guān),理,兩船在河流中同商出,算速度差琳速仍然抵消!地上的相遙箍及問題一樣,此類題需要用到一個生活需識:漂流物的速廢等于水的速度。結(jié)論:在水中鵝物體,從物體格到發(fā)現(xiàn)的廚等于從發(fā)現(xiàn)到返回?fù)炱鹞矬w的睛與船速、水速、順行逆行無關(guān)追及問題追及距離=速度差×追及時間追及時間=追及距離÷速度差速度差=追及距離÷追及時間行路方面的相遇問題,基本特征是兩個運(yùn)動的物體同時或不同時由兩地出發(fā)相向而行,在途中相遇?;娟P(guān)系如下:相遇時間=總路程÷(甲速+乙速)總路程=(甲速+乙速)×相遇時間甲、乙速度的和-已知速度=另一個速度相遇問題的題材可以是行路方面的,也可以是共同工作方面的。由于已知條件的不同,有些題目是求相遇需要的時間,有些題目是求兩地之間的路程,還有些題目是求另一速度的。相應(yīng)地,共同工作的問題,有的求完成任務(wù)需要的時間,有的求工作總量,還有的求另一個工作效率的。追及問題主要研究同向追及問題。同向追及問題的特征是兩1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論