版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年湖北省黃岡實驗中學中考數(shù)學猜題卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元2.為喜迎黨的十九大召開,樂陵某中學剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.3.在同一平面內(nèi),下列說法:①過兩點有且只有一條直線;②兩條不相同的直線有且只有一個公共點;③經(jīng)過直線外一點有且只有一條直線與已知直線垂直;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,其中正確的個數(shù)為(
)A.1個 B.2個 C.3個 D.4個4.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.5.的平方根是()A.2 B. C.±2 D.±6.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④7.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體8.已知圓錐的側(cè)面積為10πcm2,側(cè)面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm9.有15位同學參加歌詠比賽,所得的分數(shù)互不相同,取得分前8位同學進入決賽.某同學知道自己的分數(shù)后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差10.如圖,矩形ABCD的邊AB=1,BE平分∠ABC,交AD于點E,若點E是AD的中點,以點B為圓心,BE長為半徑畫弧,交BC于點F,則圖中陰影部分的面積是()A.2- B. C.2- D.二、填空題(共7小題,每小題3分,滿分21分)11.方程的解為__________.12.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.13.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細線最短需要_____cm.14.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點處,當△為直角三角形時,BE的長為.15.邊長分別為a和2a的兩個正方形按如圖的樣式擺放,則圖中陰影部分的面積為_________.16.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.則當乙車到達A地時,甲車已在C地休息了_____小時.17.分解因式:x3﹣2x2+x=______.三、解答題(共7小題,滿分69分)18.(10分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)19.(5分)某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進價比每臺甲種品牌空調(diào)的進價高20%,用7200元購進的乙種品牌空調(diào)數(shù)量比用3000元購進的甲種品牌空調(diào)數(shù)量多2臺.求甲、乙兩種品牌空調(diào)的進貨價;該商場擬用不超過16000元購進甲、乙兩種品牌空調(diào)共10臺進行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請您幫該商場設(shè)計一種進貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.20.(8分)現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.求y與x之間的函數(shù)關(guān)系式;設(shè)種植的總成本為w元,①求w與x之間的函數(shù)關(guān)系式;②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.21.(10分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.22.(10分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.(1)求拋物線的函數(shù)表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.①求S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.23.(12分)我國南水北調(diào)中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)24.(14分)已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當α=60°時,求證:△DCE是等邊三角形;(2)如圖2所示,當α=45°時,求證:=;(3)如圖3所示,當α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
設(shè)這種商品每件進價為x元,根據(jù)題中的等量關(guān)系列方程求解.【詳解】設(shè)這種商品每件進價為x元,則根據(jù)題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關(guān)鍵是確定未知數(shù),根據(jù)題中的等量關(guān)系列出正確的方程.2、C【解析】
根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關(guān)鍵在于對知識點的理解和把握.3、C【解析】
根據(jù)直線的性質(zhì)公理,相交線的定義,垂線的性質(zhì),平行公理對各小題分析判斷后即可得解.【詳解】解:在同一平面內(nèi),①過兩點有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個公共點,平行沒有公共點,故②錯誤;③在同一平面內(nèi),經(jīng)過直線外一點有且只有一條直線與已知直線垂直,故③正確;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個,故選C.【點睛】本題考查了平行公理,直線的性質(zhì),垂線的性質(zhì),以及相交線的定義,是基礎(chǔ)概念題,熟記概念是解題的關(guān)鍵.4、A【解析】試題分析:根據(jù)軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形5、D【解析】
先化簡,然后再根據(jù)平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡是解題的關(guān)鍵,本題比較容易出錯.6、C【解析】
①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設(shè)BC=a,CE=y,由勾股定理就可以得出EF與x、y的關(guān)系,表示出BE與EF,即可判斷BE+DF與EF關(guān)系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設(shè)EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結(jié)論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設(shè)BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關(guān)系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設(shè)EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關(guān)鍵.7、D【解析】
本題中,圓柱的俯視圖是個圓,可以堵住圓形空洞,它的正視圖和左視圖是個矩形,可以堵住方形空洞.【詳解】根據(jù)三視圖的知識來解答.圓柱的俯視圖是一個圓,可以堵住圓形空洞,而它的正視圖以及側(cè)視圖都為一個矩形,可以堵住方形的空洞,故圓柱是最佳選項.故選D.【點睛】此題考查立體圖形,本題將立體圖形的三視圖運用到了實際中,只要弄清楚了立體圖形的三視圖,解決這類問題其實并不難.8、C【解析】
圓錐的側(cè)面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設(shè)母線長為R,則圓錐的側(cè)面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關(guān)鍵.9、B【解析】
由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學知道了自己的分數(shù)后,想知道自己能否進入決賽,還需知道這十五位同學的分數(shù)的中位數(shù).故選B.【點睛】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.10、B【解析】
利用矩形的性質(zhì)以及結(jié)合角平分線的性質(zhì)分別求出AE,BE的長以及∠EBF的度數(shù),進而利用圖中陰影部分的面積=S-S-S,求出答案.【詳解】∵矩形ABCD的邊AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵點E是AD的中點,∴AE=ED=1,∴圖中陰影部分的面積=S?S?S=1×2?×1×1?故選B.【點睛】此題考查矩形的性質(zhì),扇形面積的計算,解題關(guān)鍵在于掌握運算公式二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
兩邊同時乘,得到整式方程,解整式方程后進行檢驗即可.【詳解】解:兩邊同時乘,得,解得,檢驗:當時,≠0,所以x=1是原分式方程的根,故答案為:x=1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關(guān)鍵.12、1.【解析】
在Rt△ABC中,已知tanA,BC的值,根據(jù)tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.【點睛】考查解直角三角形以及勾股定理,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.13、1【解析】
要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.14、1或.【解析】
當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內(nèi)部時,如答圖1所示.
連結(jié)AC,先利用勾股定理計算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設(shè)BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.
②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【詳解】當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內(nèi)部時,如答圖1所示.
連結(jié)AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
設(shè)BE=x,則EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②當點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,∴BE=AB=1.
綜上所述,BE的長為或1.
故答案為:或1.15、1a1.【解析】
結(jié)合圖形,發(fā)現(xiàn):陰影部分的面積=大正方形的面積的+小正方形的面積-直角三角形的面積.【詳解】陰影部分的面積=大正方形的面積+小正方形的面積-直角三角形的面積=(1a)1+a1-×1a×3a=4a1+a1-3a1=1a1.故答案為:1a1.【點睛】此題考查了整式的混合運算,關(guān)鍵是列出求陰影部分面積的式子.16、2.1.【解析】
根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【點睛】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.17、x(x-1)2.【解析】由題意得,x3﹣2x2+x=x(x﹣1)2三、解答題(共7小題,滿分69分)18、見解析【解析】
以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【詳解】解:如圖,點E即為所求作的點.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.19、(1)甲種品牌的進價為1500元,乙種品牌空調(diào)的進價為1800元;(2)當購進甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時,售完后利潤最大,最大為12100元【解析】
(1)設(shè)甲種品牌空調(diào)的進貨價為x元/臺,則乙種品牌空調(diào)的進貨價為1.2x元/臺,根據(jù)數(shù)量=總價÷單價可得出關(guān)于x的分式方程,解之并檢驗后即可得出結(jié)論;(2)設(shè)購進甲種品牌空調(diào)a臺,所獲得的利潤為y元,則購進乙種品牌空調(diào)(10-a)臺,根據(jù)總價=單價×數(shù)量結(jié)合總價不超過16000元,即可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進數(shù)量即可得出y關(guān)于a的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)由(1)設(shè)甲種品牌的進價為x元,則乙種品牌空調(diào)的進價為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗,x=1500是原分式方程的解,乙種品牌空調(diào)的進價為(1+20%)×1500=1800(元).答:甲種品牌的進價為1500元,乙種品牌空調(diào)的進價為1800元;(2)設(shè)購進甲種品牌空調(diào)a臺,則購進乙種品牌空調(diào)(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設(shè)利潤為w,則w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因為-700<0,則w隨a的增大而減少,當a=7時,w最大,最大為12100元.答:當購進甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時,售完后利潤最大,最大為12100元.【點睛】本題考查了一次函數(shù)的應用、分式方程的應用以及一元一次不等式的應用,解題的關(guān)鍵是:(1)根據(jù)數(shù)量=總價÷單價列出關(guān)于x的分式方程;(2)根據(jù)總利潤=單臺利潤×購進數(shù)量找出y關(guān)于a的函數(shù)關(guān)系式.20、(1);(2)①;②【解析】
(1)先求出種植C種樹苗的人數(shù),根據(jù)現(xiàn)種植A、B、C三種樹苗一共480棵,可以列出等量關(guān)系,解出y與x之間的關(guān)系;(2)①分別求出種植A,B,C三種樹苗的成本,然后相加即可;②求出種植C種樹苗工人的人數(shù),然后用種植C種樹苗工人的人數(shù)÷總?cè)藬?shù)即可求出概率.【詳解】解:(1)設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名,則種植C種樹苗的人數(shù)為(80-x-y)人,根據(jù)題意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②種植的總成本為5600元時,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即種植A種樹苗的工人為10名,種植B種樹苗的工人為50名,種植B種樹苗的工人為:80-10-50=20名.采訪到種植C種樹苗工人的概率為:=.【點睛】本題主要考查了一次函數(shù)的實際問題,以及概率的求法,能夠?qū)嶋H問題轉(zhuǎn)化成數(shù)學模型是解答此題的關(guān)鍵.21、(1)50;(2)240;(3).【解析】
用喜愛社會實踐的人數(shù)除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計該校喜愛看電視的學生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計該校喜愛看電視的學生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率,也考查了統(tǒng)計圖.22、(1);(2)①,當m=5時,S取最大值;②滿足條件的點F共有四個,坐標分別為,,,,【解析】
(1)將A、C兩點坐標代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;
(2)①先用m表示出QE的長度,進而求出三角形的面積S關(guān)于m的函數(shù);
②直接寫出滿足條件的F點的坐標即可,注意不要漏寫.【詳解】解:(1)將A、C兩點坐標代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標為(3,8),Q(3,4),當∠FDQ=90°時,F(xiàn)1(,8),當∠FQD=90°時,則F2(,4),當∠DFQ=90°時,設(shè)F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F(xiàn)4(,6﹣),滿足條件的點F共有四個,坐標分別為F1(,8),F(xiàn)2(,4),F(xiàn)3(,6+),F(xiàn)4(,6﹣).【點睛】本題考查二次函數(shù)的綜合應用能力,其中涉及到的知識點有拋物線的解析式的求法拋物線的最值等知識點,是各地中考的熱點和難點,解題時注意數(shù)形結(jié)合數(shù)學思想的運用,同學們要加強訓練,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五金配件創(chuàng)新設(shè)計與市場需求分析-洞察分析
- 雙氯芬酸鉀抗炎效應研究-洞察分析
- 戲劇舞臺燈光設(shè)計-洞察分析
- 鐵路智能運維系統(tǒng)構(gòu)建研究-洞察分析
- 醫(yī)療廢物監(jiān)管體系構(gòu)建-洞察分析
- 藝術(shù)品市場數(shù)字化-洞察分析
- 糖尿病視網(wǎng)膜病變抗炎治療策略-洞察分析
- 稀土金屬礦選礦能耗降低-洞察分析
- 2024年滬教版九年級地理上冊階段測試試卷
- 2024年枝城市婦幼保健院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 普外科醫(yī)療組長競聘演講
- 北京市朝陽區(qū)2022-2023學年三年級上學期英語期末試卷
- GB/T 9755-2024合成樹脂乳液墻面涂料
- 嗶哩嗶哩MATES人群資產(chǎn)經(jīng)營白皮書【嗶哩嗶哩】
- 【歷史】第一、二單元測試題2024~2025學年統(tǒng)編版七年級歷史上冊
- 婚姻家庭規(guī)劃
- 認識實習報告(10篇)
- 【MOOC】內(nèi)科護理學-中山大學 中國大學慕課MOOC答案
- 醫(yī)學生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)智慧樹知到期末考試答案2024年
- 大學生國家安全教育智慧樹知到期末考試答案2024年
- 科研項目評審評分表
評論
0/150
提交評論