內(nèi)蒙古錫林郭勒市2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第1頁
內(nèi)蒙古錫林郭勒市2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第2頁
內(nèi)蒙古錫林郭勒市2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第3頁
內(nèi)蒙古錫林郭勒市2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第4頁
內(nèi)蒙古錫林郭勒市2023-2024學(xué)年中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古錫林郭勒市2023-2024學(xué)年中考數(shù)學(xué)模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.32.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動點(diǎn),AF⊥CE于點(diǎn)F,點(diǎn)E在弧AD上從A運(yùn)動到D的過程中,線段CF掃過的面積為()A.4π+3 B.4π+ C.π+ D.π+33.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A從出發(fā),繞點(diǎn)O順時針旋轉(zhuǎn)一周,則點(diǎn)A不經(jīng)過()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q4.下列運(yùn)算正確的是()A.x2?x3=x6 B.x2+x2=2x4C.(﹣2x)2=4x2 D.(a+b)2=a2+b25.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA6.甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關(guān)系如圖所示,下列結(jié)論:①甲步行的速度為60米/分;②乙走完全程用了32分鐘;③乙用16分鐘追上甲;④乙到達(dá)終點(diǎn)時,甲離終點(diǎn)還有300米其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個7.如圖,D是等邊△ABC邊AD上的一點(diǎn),且AD:DB=1:2,現(xiàn)將△ABC折疊,使點(diǎn)C與D重合,折痕為EF,點(diǎn)E、F分別在AC、BC上,則CE:CF=()A. B. C. D.8.如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點(diǎn)B坐標(biāo)為(6,4),反比例函數(shù)的圖象與AB邊交于點(diǎn)D,與BC邊交于點(diǎn)E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點(diǎn)B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.9.施工隊(duì)要鋪設(shè)1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務(wù).設(shè)原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=210.已知在一個不透明的口袋中有4個形狀、大小、材質(zhì)完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機(jī)取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.911.如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.312.如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(﹣1,2),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結(jié)論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,一塊飛鏢游戲板由大小相等的小正方形格子構(gòu)成,向游戲板隨機(jī)投擲一枚飛鏢,擊中黑色區(qū)域的概率是______.14.如果一個三角形兩邊為3cm,7cm,且第三邊為奇數(shù),則三角形的周長是_________.15.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達(dá)B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達(dá)A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數(shù)圖象,則當(dāng)乙車到達(dá)A地的時候,甲車與A地的距離為_____千米.16.?dāng)S一枚材質(zhì)均勻的骰子,擲得的點(diǎn)數(shù)為合數(shù)的概率是__________.17.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.18.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC以2cm/s的速度向點(diǎn)C移動,點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向點(diǎn)A移動,若點(diǎn)P、Q分別從點(diǎn)B、C同時出發(fā),設(shè)運(yùn)動時間為ts,當(dāng)t=__________時,△CPQ與△CBA相似.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)D,E,DG⊥AC于點(diǎn)G,交AB的延長線于點(diǎn)F.(1)求證:直線FG是⊙O的切線;(2)若AC=10,cosA=2520.(6分)如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,AD⊥CD于點(diǎn)D,且AC平分∠DAB,求證:(1)直線DC是⊙O的切線;(2)AC2=2AD?AO.21.(6分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).22.(8分)如圖,直角坐標(biāo)系中,直線與反比例函數(shù)的圖象交于A,B兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是2.(1)求反比例函數(shù)的解析式.(2)將直線沿x軸向右平移6個單位后,與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C.動點(diǎn)P在y軸正半軸上運(yùn)動,當(dāng)線段PA與線段PC之差達(dá)到最大時,求點(diǎn)P的坐標(biāo).23.(8分)為響應(yīng)國家的“一帶一路”經(jīng)濟(jì)發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進(jìn)行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.抽查D廠家的零件為件,扇形統(tǒng)計圖中D廠家對應(yīng)的圓心角為;抽查C廠家的合格零件為件,并將圖1補(bǔ)充完整;通過計算說明合格率排在前兩名的是哪兩個廠家;若要從A、B、C、D四個廠家中,隨機(jī)抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.24.(10分)某中學(xué)為開拓學(xué)生視野,開展“課外讀書周”活動,活動后期隨機(jī)調(diào)查了九年級部分學(xué)生一周的課外閱讀時間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調(diào)查的學(xué)生總數(shù)為_____人,被調(diào)查學(xué)生的課外閱讀時間的中位數(shù)是_____小時,眾數(shù)是_____小時;并補(bǔ)全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是_____;(3)若全校九年級共有學(xué)生800人,估計九年級一周課外閱讀時間為6小時的學(xué)生有多少人?25.(10分)如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過點(diǎn)A作AE∥DB交CB的延長線于點(diǎn)E,過點(diǎn)B作BF∥CA交DA的延長線于點(diǎn)F,AE,BF相交于點(diǎn)H.圖中有若干對三角形是全等的,請你任選一對進(jìn)行證明;(不添加任何輔助線)證明:四邊形AHBG是菱形;若使四邊形AHBG是正方形,還需在Rt△ABC的邊長之間再添加一個什么條件?請你寫出這個條件.(不必證明)26.(12分)計算:解不等式組,并寫出它的所有整數(shù)解.27.(12分)如圖,海中有一個小島A,該島四周11海里范圍內(nèi)有暗礁.有一貨輪在海面上由西向正東方向航行,到達(dá)B處時它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達(dá)小島南偏西45°方向上的點(diǎn)C處.問:如果貨輪繼續(xù)向正東方向航行,是否會有觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點(diǎn)睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.2、A【解析】

連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.【詳解】如下圖,連AC,OC,BC,設(shè)CD交AB于H,∵CD垂直平分線段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直徑,∴,∴,∵,∴點(diǎn)F在以AC為直徑的⊙M上運(yùn)動,當(dāng)E從A運(yùn)動到D時,點(diǎn)F從A運(yùn)動到H,連接MH,∵M(jìn)A=MH,∴∴,∵,∴CF掃過的面積為,故選:A.【點(diǎn)睛】本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關(guān)鍵.3、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)A的對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離與OA的長度應(yīng)相等根據(jù)網(wǎng)格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點(diǎn)A不經(jīng)過點(diǎn)P故選C.【點(diǎn)睛】此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等和用勾股定理求線段的長是解決此題的關(guān)鍵.4、C【解析】

根據(jù)同底數(shù)冪的法則、合并同類項(xiàng)的法則、積的乘方法則、完全平方公式逐一進(jìn)行計算即可.【詳解】A、x2?x3=x5,故A選項(xiàng)錯誤;B、x2+x2=2x2,故B選項(xiàng)錯誤;C、(﹣2x)2=4x2,故C選項(xiàng)正確;D、(a+b)2=a2+2ab+b2,故D選項(xiàng)錯誤,故選C.【點(diǎn)睛】本題考查了同底數(shù)冪的乘法、合并同類項(xiàng)、積的乘方以及完全平方公式,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵5、B【解析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【點(diǎn)睛】本題主要考查了全等三角形的判定,關(guān)鍵是掌握全等三角形的判定定理.6、A【解析】【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題中的結(jié)論是否正確,從而可以解答本題.【詳解】由圖可得,甲步行的速度為:240÷4=60米/分,故①正確,乙走完全程用的時間為:2400÷(16×60÷12)=30(分鐘),故②錯誤,乙追上甲用的時間為:16﹣4=12(分鐘),故③錯誤,乙到達(dá)終點(diǎn)時,甲離終點(diǎn)距離是:2400﹣(4+30)×60=360米,故④錯誤,故選A.【點(diǎn)睛】本題考查了函數(shù)圖象,弄清題意,讀懂圖象,從中找到必要的信息是解題的關(guān)鍵.7、B【解析】

解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對應(yīng)相等的兩三角形相似可得△AED∽△BDF所以,設(shè)AD=a,BD=2a,AB=BC=CA=3a,再設(shè)CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點(diǎn)睛】本題考查相似三角形的判定及性質(zhì).8、B【解析】

根據(jù)矩形的性質(zhì)得到,CB∥x軸,AB∥y軸,于是得到D、E坐標(biāo),根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對稱的性質(zhì)得到BF=B′F,BB′⊥ED求得BB′,設(shè)EG=x,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點(diǎn)B坐標(biāo)為(6,1),∴D的橫坐標(biāo)為6,E的縱坐標(biāo)為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關(guān)于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設(shè)EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點(diǎn)睛】本題考查了翻折變換(折疊問題),矩形的性質(zhì),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.9、A【解析】分析:設(shè)原計劃每天施工x米,則實(shí)際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實(shí)際所用時間=2,列出方程即可.詳解:設(shè)原計劃每天施工x米,則實(shí)際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點(diǎn)睛:本題考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是讀懂題意,找出合適的等量關(guān)系,列出方程.10、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數(shù)有6種,所以概率為12故選D.考點(diǎn):列表法與樹狀法.11、C【解析】

過點(diǎn)P作平行四邊形PGBD,EPHC,進(jìn)而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點(diǎn)睛】本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,且都等于60°.12、C【解析】

首先根據(jù)拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點(diǎn)中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據(jù)這些條件以及函數(shù)圖象上一些特殊點(diǎn)的坐標(biāo)來進(jìn)行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當(dāng)x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側(cè),則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點(diǎn)縱坐標(biāo)應(yīng)該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結(jié)論是①②④.故選:C.【點(diǎn)睛】本題主要考查對二次函數(shù)圖象與系數(shù)的關(guān)系,拋物線與x軸的交點(diǎn),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征等知識點(diǎn)的理解和掌握,能根據(jù)圖象確定與系數(shù)有關(guān)的式子的正負(fù)是解此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

求出黑色區(qū)域面積與正方形總面積之比即可得答案.【詳解】圖中有9個小正方形,其中黑色區(qū)域一共有3個小正方形,所以隨意投擲一個飛鏢,擊中黑色區(qū)域的概率是,故答案為.【點(diǎn)睛】本題考查了幾何概率,熟練掌握概率的計算公式是解題的關(guān)鍵.注意面積之比幾何概率.14、15cm、17cm、19cm.【解析】試題解析:設(shè)三角形的第三邊長為xcm,由題意得:7-3<x<7+3,即4<x<10,則x=5,7,9,三角形的周長:3+7+5=15(cm),3+7+7=17(cm),3+7+9=19(cm).考點(diǎn):三角形三邊關(guān)系.15、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當(dāng)相遇后車共行駛了720千米時,甲車到達(dá)B地,由此則可求得兩車的速度.再根據(jù)甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設(shè)甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當(dāng)甲車到達(dá)B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當(dāng)乙車到達(dá)A地時,甲車離A地的距離為900-270=630千米.點(diǎn)睛:利用函數(shù)圖象解決實(shí)際問題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標(biāo)表示的意義,抓住交點(diǎn),起點(diǎn).終點(diǎn)等關(guān)鍵點(diǎn),理解問題的發(fā)展過程,將實(shí)際問題抽象為數(shù)學(xué)問題,從而將這個數(shù)學(xué)問題變化為解答實(shí)際問題.16、【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:擲一枚質(zhì)地均勻的骰子,擲得的點(diǎn)數(shù)可能是1、2、3、4、5、6中的任意一個數(shù),共有六種可能,其中4、6是合數(shù),所以概率為=.故答案為.點(diǎn)睛:本題主要考查概率的求法,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.17、【解析】

延長AD和BC交于點(diǎn)E,在直角△ABE中利用三角函數(shù)求得BE的長,則EC的長即可求得,然后在直角△CDE中利用三角函數(shù)的定義求解.【詳解】如圖,延長AD、BC相交于點(diǎn)E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.18、4.8或【解析】

根據(jù)題意可分兩種情況,①當(dāng)CP和CB是對應(yīng)邊時,△CPQ∽△CBA與②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,根據(jù)相似三角形的性質(zhì)分別求出時間t即可.【詳解】①CP和CB是對應(yīng)邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當(dāng)t=4.8或時,△CPQ與△CBA相似.【點(diǎn)睛】此題主要考查相似三角形的性質(zhì),解題的關(guān)鍵是分情況討論.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(3)證明見試題解析;(3)3.【解析】試題分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直線FG是⊙O的切線.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2試題解析:(3)如圖3,連接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半徑,∴直線FG是⊙O的切線;(3)如圖3,∵AB=AC=30,AB是⊙O的直徑,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考點(diǎn):3.切線的判定;3.相似三角形的判定與性質(zhì);3.綜合題.20、(1)證明見解析.(2)證明見解析.【解析】分析:(1)連接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,據(jù)此知OC∥AD,根據(jù)AD⊥DC即可得證;(2)連接BC,證△DAC∽△CAB即可得.詳解:(1)如圖,連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切線;(2)連接BC,∵AB為⊙O的直徑,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB?AD,∵AB=2AO,∴AC2=2AD?AO.點(diǎn)睛:本題主要考查圓的切線,解題的關(guān)鍵是掌握切線的判定、圓周角定理及相似三角形的判定與性質(zhì).21、(1)見解析;(2)75﹣a.【解析】

(1)連接CD,求出∠ADC=90°,根據(jù)切線長定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.【點(diǎn)睛】本題考查了圓周角定理,切線的性質(zhì),切線長定理,等腰三角形的性質(zhì)和判定,勾股定理,扇形的面積,三角形的面積等知識點(diǎn),能綜合運(yùn)用知識點(diǎn)進(jìn)行推理和計算是解此題的關(guān)鍵.22、(1);(2)P(0,6)【解析】試題分析:(1)先求得點(diǎn)A的坐標(biāo),再利用待定系數(shù)法求得反比例函數(shù)的解析式即可;(2)連接AC,根據(jù)三角形兩邊之差小于第三邊知:當(dāng)A、C、P不共線時,PA-PC<AC;當(dāng)A、C、P不共線時,PA-PC=AC;因此,當(dāng)點(diǎn)P在直線AC與y軸的交點(diǎn)時,PA-PC取得最大值.先求得平移后直線的解析式,再求得平移后直線與反比例函數(shù)的圖象的交點(diǎn)坐標(biāo),最后求直線AC的解析式,即可求得點(diǎn)P的坐標(biāo).試題解析:令一次函數(shù)中,則,解得:,即點(diǎn)A的坐標(biāo)為(-4,2).∵點(diǎn)A(-4,2)在反比例函數(shù)的圖象上,∴k=-4×2=-8,∴反比例函數(shù)的表達(dá)式為.連接AC,根據(jù)三角形兩邊之差小于第三邊知:當(dāng)A、C、P不共線時,PA-PC<AC;當(dāng)A、C、P不共線時,PA-PC=AC;因此,當(dāng)點(diǎn)P在直線AC與y軸的交點(diǎn)時,PA-PC取得最大值.設(shè)平移后直線于x軸交于點(diǎn)F,則F(6,0)設(shè)平移后的直線解析式為,將F(6,0)代入得:b=3∴直線CF解析式:令3=,解得:,∴C(-2,4)∵A、C兩點(diǎn)坐標(biāo)分別為A(-4,2)、C(-2,4)∴直線AC的表達(dá)式為,此時,P點(diǎn)坐標(biāo)為P(0,6).點(diǎn)睛:本題是一次函數(shù)與反比例函數(shù)的綜合題,主要考查了用待定系數(shù)法求函數(shù)的解析式、一次函數(shù)與反比例函數(shù)的交點(diǎn)坐標(biāo),熟練運(yùn)用一次函數(shù)及反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)500,90°;(2)380;(3)合格率排在前兩名的是C、D兩個廠家;(4)P(選中C、D)=.【解析】試題分析:(1)計算出D廠的零件比例,則D廠的零件數(shù)=總數(shù)×所占比例,D廠家對應(yīng)的圓心角為360°×所占比例;(2)C廠的零件數(shù)=總數(shù)×所占比例;(3)計算出各廠的合格率后,進(jìn)一步比較得出答案即可;(4)利用樹狀圖法列舉出所有可能的結(jié)果,然后利用概率公式即可求解.試題解析:(1)D廠的零件比例=1-20%-20%-35%=25%,D廠的零件數(shù)=2000×25%=500件;D廠家對應(yīng)的圓心角為360°×25%=90°;(2)C廠的零件數(shù)=2000×20%=400件,C廠的合格零件數(shù)=400×95%=380件,如圖:(3)A廠家合格率=630÷(2000×35%)=90%,B廠家合格率=370÷(2000×20%)=92.5%,C廠家合格率=95%,D廠家合格率470÷500=94%,合格率排在前兩名的是C、D兩個廠家;(4)根據(jù)題意畫樹形圖如下:共有12種情況,選中C、D的有2種,則P(選中C、D)==.考點(diǎn):1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.樹狀圖法.24、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】

(1)根據(jù)統(tǒng)計圖可知,課外閱讀達(dá)3小時的共10人,占總?cè)藬?shù)的20%,由此可得出總?cè)藬?shù);求出課外閱讀時間4小時與6小時男生的人數(shù),再根據(jù)中位數(shù)與眾數(shù)的定義即可得出結(jié)論;根據(jù)求出的人數(shù)補(bǔ)全條形統(tǒng)計圖即可;

(2)求出課外閱讀時間為5小時的人數(shù),再求出其人數(shù)與總?cè)藬?shù)的比值即可得出扇形的圓心角度數(shù);

(3)求出總?cè)藬?shù)與課外閱讀時間為6小時的學(xué)生人數(shù)的百分比的積即可.【詳解】解:(1)∵課外閱讀達(dá)3小時的共10人,占總?cè)藬?shù)的20%,∴=50(人).∵課外閱讀4小時的人數(shù)是32%,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論