湖南省湘南聯(lián)盟2023-2024學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第1頁
湖南省湘南聯(lián)盟2023-2024學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第2頁
湖南省湘南聯(lián)盟2023-2024學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第3頁
湖南省湘南聯(lián)盟2023-2024學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第4頁
湖南省湘南聯(lián)盟2023-2024學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖南省湘南聯(lián)盟2023-2024學(xué)年高考數(shù)學(xué)倒計(jì)時(shí)模擬卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的定義域?yàn)?,集合,則()A. B. C. D.2.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.3.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個(gè)程序圖,若,,則輸出的()A.3 B.4 C.5 D.64.已知集合,集合,則等于()A. B.C. D.5.已知正方體的棱長為,,,分別是棱,,的中點(diǎn),給出下列四個(gè)命題:①;②直線與直線所成角為;③過,,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個(gè)數(shù)為()A. B. C. D.6.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)7.橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.8.已知函數(shù)的圖像與一條平行于軸的直線有兩個(gè)交點(diǎn),其橫坐標(biāo)分別為,則()A. B. C. D.9.已知為定義在上的奇函數(shù),若當(dāng)時(shí),(為實(shí)數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.10.過雙曲線左焦點(diǎn)的直線交的左支于兩點(diǎn),直線(是坐標(biāo)原點(diǎn))交的右支于點(diǎn),若,且,則的離心率是()A. B. C. D.11.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知等差數(shù)列的前n項(xiàng)和為,,則A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知正方形邊長為,空間中的動(dòng)點(diǎn)滿足,,則三棱錐體積的最大值是______.14.如圖,從一個(gè)邊長為的正三角形紙片的三個(gè)角上,沿圖中虛線剪出三個(gè)全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個(gè)缺少上底的正三棱柱,而剪出的三個(gè)相同的四邊形恰好拼成這個(gè)正三棱柱的上底,則所得正三棱柱的體積為______.15.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為______.16.如圖,為測量出高,選擇和另一座山的山頂為測量觀測點(diǎn),從點(diǎn)測得點(diǎn)的仰角,點(diǎn)的仰角以及;從點(diǎn)測得.已知山高,則山高_(dá)_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某商場舉行有獎(jiǎng)促銷活動(dòng),顧客購買每滿元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷鰝€(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)閭€(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.18.(12分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對任意的恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù),(Ⅰ)當(dāng)時(shí),證明;(Ⅱ)已知點(diǎn),點(diǎn),設(shè)函數(shù),當(dāng)時(shí),試判斷的零點(diǎn)個(gè)數(shù).20.(12分)已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn),.(1)當(dāng)時(shí),求的面積;(2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值.21.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.22.(10分)在極坐標(biāo)系中,直線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點(diǎn)的直角坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.2、A【解析】

分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項(xiàng).【詳解】令,可得,即函數(shù)的定義域?yàn)?,定義域關(guān)于原點(diǎn)對稱,,則函數(shù)為奇函數(shù),排除C、D選項(xiàng);當(dāng)時(shí),,,則,排除B選項(xiàng).故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.3、B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時(shí),的值記為有,則有;記執(zhí)行第次循環(huán)時(shí),的值記為有,則有.令,則有,故,故選B.點(diǎn)睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項(xiàng)的綜合,屬于中檔題,解題時(shí)注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項(xiàng)滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項(xiàng)積等).4、B【解析】

求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點(diǎn)睛】該題考查的是有關(guān)集合的運(yùn)算的問題,涉及到的知識點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.5、C【解析】

畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個(gè)命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【點(diǎn)睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.6、A【解析】試題分析:,,所以,即集合中共有3個(gè)元素,故選A.考點(diǎn):集合的運(yùn)算.7、C【解析】

根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長軸長為,短軸長為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)題.8、A【解析】

畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,,又,由圖可得與關(guān)于對稱,故選:A【點(diǎn)睛】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、A【解析】

先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當(dāng)時(shí),.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).10、D【解析】

如圖,設(shè)雙曲線的右焦點(diǎn)為,連接并延長交右支于,連接,設(shè),利用雙曲線的幾何性質(zhì)可以得到,,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線的右焦點(diǎn)為,連接,連接并延長交右支于.因?yàn)椋仕倪呅螢槠叫兴倪呅?,?又雙曲線為中心對稱圖形,故.設(shè),則,故,故.因?yàn)闉橹苯侨切危?,解?在中,有,所以.故選:D.【點(diǎn)睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構(gòu)造關(guān)于的方程,本題屬于難題.11、B【解析】

根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點(diǎn)問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.12、C【解析】

方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因?yàn)?,所以,則.故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點(diǎn),空間中的動(dòng)點(diǎn)滿足,,所以,整理得,,當(dāng),時(shí),取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點(diǎn)睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.14、1【解析】

由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積.【詳解】如圖,作,交于,,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:.故答案為:1.【點(diǎn)睛】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結(jié)構(gòu)特征等基礎(chǔ)知識,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意翻折前后的不變量.15、【解析】

求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點(diǎn)睛】本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.16、1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點(diǎn):正弦定理的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、;.【解析】

設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,求出;由題意可知,隨機(jī)變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎(jiǎng)為事件,因?yàn)轭櫩蛿S得點(diǎn)數(shù)大于的概率為,顧客擲得點(diǎn)數(shù)小于,然后抽將得三等獎(jiǎng)的概率為,所以;由題意可知,隨機(jī)變量的可能取值為,,,且,,,所以隨機(jī)變量的數(shù)學(xué)期望,,化簡得,由題意可知,,即,化簡得,因?yàn)?,解得,即的最小值?【點(diǎn)睛】本題主要考查概率和期望的求法,屬于??碱}.18、(1);(2)【解析】

(1)將有兩個(gè)零點(diǎn)轉(zhuǎn)化為方程有兩個(gè)相異實(shí)根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問題轉(zhuǎn)化為對一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【詳解】(1)有兩個(gè)零點(diǎn)關(guān)于的方程有兩個(gè)相異實(shí)根由,知有兩個(gè)零點(diǎn)有兩個(gè)相異實(shí)根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),有兩個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍為;(2)當(dāng)時(shí),,原命題等價(jià)于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當(dāng)時(shí),,當(dāng)時(shí),,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.19、(Ⅰ)詳見解析;(Ⅱ)1.【解析】

(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點(diǎn),點(diǎn),∴,.①當(dāng)時(shí),可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個(gè)零點(diǎn),②當(dāng)時(shí),,,∴,∴在恒成立,∴在無零點(diǎn).③當(dāng)時(shí),,.∴在單調(diào)遞減,,.∴在存在一個(gè)零點(diǎn).綜上,的零點(diǎn)個(gè)數(shù)為1..【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)問題,考查了分類討論思想,屬于壓軸題.20、(1);(2)或【解析】

(1)聯(lián)立直線的方程和橢圓方程,求得交點(diǎn)的橫坐標(biāo),由此求得三角形的面積.(2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡后求得的坐標(biāo),進(jìn)而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關(guān)系,結(jié)合求得點(diǎn)的坐標(biāo),進(jìn)而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點(diǎn),則且.(2)法一:設(shè)點(diǎn)因?yàn)椋?,所以又點(diǎn),都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點(diǎn)睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運(yùn)算求解能力,屬于中檔題.21、(1)(2)證明見解析【解析】

(1),①當(dāng)時(shí),,②兩式相減即得數(shù)列的通項(xiàng)公式;(2)先求出,再利用裂項(xiàng)相消法求和證明.【詳解】(1)解:,①當(dāng)時(shí),.當(dāng)時(shí),,②由①-②,得,因?yàn)榉仙鲜剑?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論