版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省松原市重點(diǎn)中學(xué)2024屆高考考前模擬數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合,,若,則()A. B. C. D.2.盒中有6個(gè)小球,其中4個(gè)白球,2個(gè)黑球,從中任取個(gè)球,在取出的球中,黑球放回,白球則涂黑后放回,此時(shí)盒中黑球的個(gè)數(shù),則()A., B.,C., D.,3.已知復(fù)數(shù),則的虛部為()A. B. C. D.14.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.5.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.26.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個(gè)數(shù)為()A.1 B.2 C.3 D.07.設(shè),滿足約束條件,則的最大值是()A. B. C. D.8.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.9.已知雙曲線的右焦點(diǎn)為,過原點(diǎn)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),延長交右支于點(diǎn),若,則雙曲線的離心率是()A. B. C. D.10.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-111.設(shè),則()A. B. C. D.12.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣85二、填空題:本題共4小題,每小題5分,共20分。13.已知變量(m>0),且,若恒成立,則m的最大值________.14.在中,,,則_________.15.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.16.已知,,分別為內(nèi)角,,的對邊,,,,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對于任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取得最大值時(shí)直線的直角坐標(biāo)方程.19.(12分)已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.20.(12分)已知在中,內(nèi)角所對的邊分別為,若,,且.(1)求的值;(2)求的面積.21.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點(diǎn).(1)求證:平面;(2)求二面角的大小.22.(10分)某網(wǎng)絡(luò)商城在年月日開展“慶元旦”活動(dòng),當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎(jiǎng)的方式,抽取了家店鋪進(jìn)行紅包獎(jiǎng)勵(lì).如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;(2)估計(jì)抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進(jìn)行銷售研究,求抽取的店鋪銷售額在中的個(gè)數(shù)的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.2、C【解析】
根據(jù)古典概型概率計(jì)算公式,計(jì)算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項(xiàng).【詳解】表示取出的為一個(gè)白球,所以.表示取出一個(gè)黑球,,所以.表示取出兩個(gè)球,其中一黑一白,,表示取出兩個(gè)球?yàn)楹谇?,,表示取出兩個(gè)球?yàn)榘浊?,,所?所以,.故選:C【點(diǎn)睛】本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望的計(jì)算,屬于中檔題.3、C【解析】
先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、B【解析】
由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個(gè)交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個(gè)交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會(huì)大大增加,甚至沒法求解.5、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.6、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個(gè)數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個(gè)數(shù)為3.故選:C.【點(diǎn)睛】本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.7、D【解析】
作出不等式對應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過點(diǎn)時(shí),取得最大值.由得:,故選:D【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.8、C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.9、D【解析】
設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,和中,利用勾股定理計(jì)算得到答案.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.10、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.11、D【解析】
結(jié)合指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點(diǎn)睛】本題考查了幾個(gè)數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.12、D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項(xiàng)和公比,根據(jù)等比數(shù)列的前n項(xiàng)和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的前n項(xiàng)和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
在不等式兩邊同時(shí)取對數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】不等式兩邊同時(shí)取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點(diǎn)睛】本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵14、【解析】
先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結(jié)果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點(diǎn)睛】本題考查了投影的應(yīng)用,考查了數(shù)量積的幾何意義及向量的模的運(yùn)算,屬于基礎(chǔ)題.15、【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.16、【解析】
根據(jù)題意,利用余弦定理求得,再運(yùn)用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點(diǎn)睛】本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據(jù)分段函數(shù)解析式,求得的取值范圍,結(jié)合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點(diǎn)睛】本小題考查了絕對值不等式,絕對值三角不等式和函數(shù)最值問題,考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)化思想.18、(1)曲線,曲線.(2).【解析】
(1)用和消去參數(shù)即得的極坐標(biāo)方程;將兩邊同時(shí)乘以,然后由解得直角坐標(biāo)方程.(2)過極點(diǎn)的直線的參數(shù)方程為,代入到和:中,表示出即可求解.【詳解】解:由和,得,化簡得故:將兩邊同時(shí)乘以,得因?yàn)椋缘玫闹苯亲鴺?biāo)方程.(2)設(shè)直線的極坐標(biāo)方程由,得,由,得故當(dāng)時(shí),取得最大值此時(shí)直線的極坐標(biāo)方程為:,其直角坐標(biāo)方程為:.【點(diǎn)睛】考查直角坐標(biāo)方程、極坐標(biāo)方程、參數(shù)方程的互相轉(zhuǎn)化以及應(yīng)用圓的極坐標(biāo)方程中的幾何意義求距離的的最大值方法;中檔題.19、(1);(2)見解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設(shè)軸上存在點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形,設(shè),,線段的中點(diǎn)為,根據(jù)韋達(dá)定理求出點(diǎn)的坐標(biāo),再根據(jù),,即可求出的值,可得點(diǎn)的坐標(biāo).【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設(shè)軸上存在點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形設(shè),,線段的中點(diǎn)為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當(dāng)時(shí),點(diǎn)滿足題意;當(dāng)時(shí),點(diǎn)滿足題意故軸上存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形【點(diǎn)睛】本題考查了橢圓的方程,直線和橢圓的位置關(guān)系,斜率公式,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題.20、(1);(2)【解析】
(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進(jìn)而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【點(diǎn)睛】本題考查了正弦定理在邊角轉(zhuǎn)化中的應(yīng)用,正弦差角公式的應(yīng)用,三角形面積公式求法,屬于基礎(chǔ)題.21、(1)證明見解析(2)【解析】
(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育法規(guī)綜合檢測試卷B卷含答案
- 2024年垃圾焚燒發(fā)電設(shè)備項(xiàng)目資金申請報(bào)告代可行性研究報(bào)告
- 四年級數(shù)學(xué)(簡便運(yùn)算)計(jì)算題專項(xiàng)練習(xí)與答案
- 2024年期貨船租賃協(xié)議條款匯編
- 2024年醫(yī)生招聘協(xié)議樣本下載
- 學(xué)習(xí)先進(jìn)教師心得體會(huì)
- 2024年車輛信用擔(dān)保服務(wù)正式協(xié)議
- 2024專項(xiàng)水穩(wěn)層鋪設(shè)項(xiàng)目協(xié)議樣本
- 2024采購部常用商品買賣協(xié)議模板
- 2024年商鋪?zhàn)赓U協(xié)議模板范例
- 中國農(nóng)業(yè)文化遺產(chǎn)與生態(tài)智慧智慧樹知到期末考試答案章節(jié)答案2024年浙江農(nóng)林大學(xué)
- 2024年招錄考試-大學(xué)畢業(yè)生士兵提干筆試參考題庫含答案
- 超聲醫(yī)學(xué)科-提高超聲醫(yī)學(xué)科危急值上報(bào)率PDCA
- 計(jì)算機(jī)操作員(五級)理論考試題庫(濃縮300題)
- 化驗(yàn)室崗位培訓(xùn)
- 人教版小學(xué)數(shù)學(xué)六年級上冊《百分?jǐn)?shù)》單元作業(yè)設(shè)計(jì)
- 2024-2029年中國自體富血小板血漿(PRP)行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報(bào)告
- (2024年)學(xué)校傳染病預(yù)防課件
- 餅干新品上市推廣方案
- (高清版)DZT 0303-2017 地質(zhì)遺跡調(diào)查規(guī)范
- 小學(xué)道德與法治課程標(biāo)準(zhǔn)與教材研究 課件 第3、4章 入學(xué)教育、道德教育
評論
0/150
提交評論