版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省安遠縣重點達標名校2024年中考押題數學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.-2的倒數是()A.-2 B. C. D.22.某一公司共有51名員工(包括經理),經理的工資高于其他員工的工資,今年經理的工資從去年的200000元增加到225000元,而其他員工的工資同去年一樣,這樣,這家公司所有員工今年工資的平均數和中位數與去年相比將會()A.平均數和中位數不變 B.平均數增加,中位數不變C.平均數不變,中位數增加 D.平均數和中位數都增大3.若分式有意義,則a的取值范圍為()A.a≠4 B.a>4 C.a<4 D.a=44.學校為創(chuàng)建“書香校園”購買了一批圖書.已知購買科普類圖書花費10000元,購買文學類圖書花費9000元,其中科普類圖書平均每本的價格比文學類圖書平均每本的價格貴5元,且購買科普書的數量比購買文學書的數量少100本.求科普類圖書平均每本的價格是多少元?若設科普類圖書平均每本的價格是x元,則可列方程為()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1005.某自行車廠準備生產共享單車4000輛,在生產完1600輛后,采用了新技術,使得工作效率比原來提高了20%,結果共用了18天完成任務,若設原來每天生產自行車x輛,則根據題意可列方程為()A.+=18 B.=18C.+=18 D.=186.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.127.如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-23;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2A.1個B.2個C.3個D.4個8.關于x的一元二次方程x2+3x+m=0有兩個不相等的實數根,則A.m≤94B.m<949.某同學將自己7次體育測試成績(單位:分)繪制成折線統(tǒng)計圖,則該同學7次測試成績的眾數和中位數分別是()A.50和48 B.50和47 C.48和48 D.48和4310.2017年我國大學生畢業(yè)人數將達到7490000人,這個數據用科學記數法表示為()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×10711.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°12.y=(m﹣1)x|m|+3m表示一次函數,則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知拋物線與坐標軸分別交于A,B,C三點,在拋物線上找到一點D,使得∠DCB=∠ACO,則D點坐標為____________________.14.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是
________.15.半徑是6cm的圓內接正三角形的邊長是_____cm.16.計算﹣的結果為_____.17.如圖,五邊形是正五邊形,若,則__________.18.若4a+3b=1,則8a+6b-3的值為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.20.(6分)(1)計算:(2)先化簡,再求值:,其中x是不等式的負整數解.21.(6分)如圖,一次函數y=﹣x+4的圖象與反比例函數y=(k為常數,且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數的表達式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標求△PAB的面積.22.(8分)發(fā)現如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.23.(8分)某市舉行“傳承好家風”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機抽取了部分參賽征文,統(tǒng)計了它們的成績,并繪制了如圖不完整的兩幅統(tǒng)計圖表.征文比賽成績頻數分布表分數段頻數頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計1請根據以上信息,解決下列問題:(1)征文比賽成績頻數分布表中c的值是;(2)補全征文比賽成績頻數分布直方圖;(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎征文的篇數.24.(10分)文藝復興時期,意大利藝術大師達.芬奇研究過用圓弧圍成的部分圖形的面積問題.已知正方形的邊長是2,就能求出圖中陰影部分的面積.證明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S陰影=S1+S6=S1+S2+S3=.25.(10分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經過的路程為s.當β=45°時,若△APQ是“中邊三角形”,試求的值.26.(12分)如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數的圖象于點B,AB=.求反比例函數的解析式;若P(,)、Q(,)是該反比例函數圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.27.(12分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據倒數的定義求解.【詳解】-2的倒數是-故選B【點睛】本題難度較低,主要考查學生對倒數相反數等知識點的掌握2、B【解析】
本題考查統(tǒng)計的有關知識,找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數,平均數是指在一組數據中所有數據之和再除以數據的個數.【詳解】解:設這家公司除經理外50名員工的工資和為a元,則這家公司所有員工去年工資的平均數是元,今年工資的平均數是元,顯然;
由于這51個數據按從小到大的順序排列的次序完全沒有變化,所以中位數不變.
故選B.【點睛】本題主要考查了平均數,中位數的概念,要掌握這些基本概念才能熟練解題.同時注意到個別數據對平均數的影響較大,而對中位數和眾數沒影響.3、A【解析】
分式有意義時,分母a-4≠0【詳解】依題意得:a?4≠0,解得a≠4.故選:A【點睛】此題考查分式有意義的條件,難度不大4、B【解析】【分析】直接利用購買科普書的數量比購買文學書的數量少100本得出等式進而得出答案.【詳解】科普類圖書平均每本的價格是x元,則可列方程為:﹣=100,故選B.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.5、B【解析】
根據前后的時間和是18天,可以列出方程.【詳解】若設原來每天生產自行車x輛,根據前后的時間和是18天,可以列出方程.故選B【點睛】本題考核知識點:分式方程的應用.解題關鍵點:根據時間關系,列出分式方程.6、B【解析】分析:過點D作DE⊥AB于E,先求出CD的長,再根據角平分線上的點到角的兩邊的距離相等可得DE=CD=2,然后根據三角形的面積公式列式計算即可得解.詳解:如圖,過點D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點睛:考查角平分線的性質,角平分線上的點到角兩邊的距離相等.7、D【解析】
利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進行判斷;利用2≤c≤3和c=-3a可對②進行判斷;利用二次函數的性質可對③進行判斷;根據拋物線y=ax2+bx+c與直線y=n-1有兩個交點可對④進行判斷.【詳解】∵拋物線開口向下,∴a<0,而拋物線的對稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點坐標(1,n),∴x=1時,二次函數值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點坐標(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,所以④正確.故選D.【點睛】本題考查了二次函數圖象與系數的關系:二次項系數a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.8、B【解析】試題分析:根據題意得△=32﹣4m>0,解得m<94故選B.考點:根的判別式.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數)的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.9、A【解析】
由折線統(tǒng)計圖,可得該同學7次體育測試成績,進而求出眾數和中位數即可.【詳解】由折線統(tǒng)計圖,得:42,43,47,48,49,50,50,7次測試成績的眾數為50,中位數為48,故選:A.【點睛】本題考查了眾數和中位數,解題的關鍵是利用折線統(tǒng)計圖獲取有效的信息.10、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】7490000=7.49×106.故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.11、D【解析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點睛】本題主要考查了平行線的性質以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內角互補.解決問題的關鍵是作平行線.12、B【解析】由一次函數的定義知,|m|=1且m-1≠0,所以m=-1,故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(,),(-4,-5)【解析】
求出點A、B、C的坐標,當D在x軸下方時,設直線CD與x軸交于點E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標,再求出CE的直線解析式,聯立拋物線即可求出D的坐標,再由對稱性即可求出D在x軸上方時的坐標.【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當點D在x軸下方時,∴設直線CD與x軸交于點E,過點E作EG⊥CB于點G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設CE的解析式為y=mx+n,交拋物線于點D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線CE的解析式為:y=2x+3,聯立解得:x=-4或x=0,∴D2的坐標為(-4,-5)設點E關于BC的對稱點為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線CF的解析式為:y=x+3,聯立解得:x=0或x=-∴D1的坐標為(-,)故答案為(-,)或(-4,-5)【點睛】本題考查二次函數的綜合問題,解題的關鍵是根據對稱性求出相關點的坐標,利用直線解析式以及拋物線的解析式即可求出點D的坐標.14、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點:概率公式.15、6【解析】
根據題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質解答即可.【詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據垂徑定理,BC=2×BD=6,故答案為6.【點睛】本題主要考查了正多邊形和圓,正三角形的性質,熟練掌握等邊三角形的性質是解題的關鍵,根據圓的內接正三角形的特點,求出內心到每個頂點的距離,可求出內接正三角形的邊長.16、.【解析】
根據同分母分式加減運算法則化簡即可.【詳解】原式=,故答案為.【點睛】本題考查了分式的加減運算,熟記運算法則是解題的關鍵.17、72【解析】分析:延長AB交于點F,根據得到∠2=∠3,根據五邊形是正五邊形得到∠FBC=72°,最后根據三角形的外角等于與它不相鄰的兩個內角的和即可求出.詳解:延長AB交于點F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點睛:此題主要考查了平行線的性質和正五邊形的性質,正確把握五邊形的性質是解題關鍵.18、-1【解析】
先求出8a+6b的值,然后整體代入進行計算即可得解.【詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【點睛】本題考查了代數式求值,整體思想的利用是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解析】
(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據AE=B′E,可得∠EAB′=∠EB′A,再根據∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【點睛】本題屬于四邊形綜合題,主要考查了折疊的性質,等邊三角形的性質,正方形的判定與性質以及勾股定理的綜合運用,解題的關鍵是設要求的線段長為x,然后根據折疊和軸對稱的性質用含x的代數式表示其他線段的長度,選擇適當的直角三角形,運用勾股定理列出方程求出答案.20、(1)5;(2),3.【解析】試題分析:(1)原式先計算乘方運算,再計算乘運算,最后算加減運算即可得到結果;(2)先化簡,再求得x的值,代入計算即可.試題解析:(1)原式=1-2+1×2+4=5;(2)原式=×=,當3x+7>1,即x>-2時的負整數時,(x=-1)時,原式==3..21、(1)反比例函數的表達式y(tǒng)=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數的表達式;(2)作點D關于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點A(1,3)代入反比例函數y=,
得k=3,
∴反比例函數的表達式y(tǒng)=,
(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,
∴D(3,﹣1),設直線AD的解析式為y=mx+n,
把A,D兩點代入得,,
解得m=﹣2,n=1,
∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,
∴點P坐標(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數與反比例函數的綜合題,并與幾何圖形結合在一起來求有關于最值方面的問題.此類問題的重點是在于通過待定系數法求出函數圖象的解析式,再通過函數解析式反過來求坐標,為接下來求面積做好鋪墊.22、(1)見解析;(2)見解析;(3)1.【解析】
(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點睛】此題考查多邊形的內角和外角,,解題的關鍵是熟練掌握三角形的外角的性質,屬于中考??碱}型23、(1)0.2;(2)答案見解析;(3)300【解析】
第一問,根據頻率的和為1,求出c的值;第二問,先用分數段是90到100的頻數和頻率求出總的樣本數量,然后再乘以頻率分別求出a和b的值,再畫出頻數分布直方圖;第三問用全市征文的總篇數乘以80分以上的頻率得到全市80分以上的征文的篇數.【詳解】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案為0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,補全征文比賽成績頻數分布直方圖:(3)全市獲得一等獎征文的篇數為:1000×(0.2+0.1)=300(篇).【點睛】掌握有關頻率和頻數的相關概念和計算,是解答本題的關鍵.24、S1,S3,S4,S5,1【解析】
利用圖形的拼割,正方形的性質,尋找等面積的圖形,即可解決問題.【詳解】由題意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S陰影面積=S1+S6=S1+S1+S3=1.故答案為S1,S3,S4,S5,1.【點睛】考查正方形的性質、矩形的性質、扇形的面積等知識,解題的關鍵是靈活運用所學知識解決問題.25、tanA=;綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【解析】
(1)由AC和BD是“對應邊”,可得AC=BD,設AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,可得AC是QP的垂直平分線.可求得△AEF∽△CEP,=,分兩種情況:當底邊PQ與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【詳解】解:[理解]∵AC和BD是“對應邊”,∴AC=BD,設AC=2x,則CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,當點P在AB上時,△APQ是等腰直角三角形,不可能是“中邊三角形”,如圖2,當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分線,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分兩種情況:當底邊PQ與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,如圖3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【點睛】本題是一道相似形綜合運用的試題,考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度生態(tài)循環(huán)農業(yè)農副業(yè)承包合同書模板4篇
- 2025年度個人藝術品借款合同樣本3篇
- 2025年度環(huán)保產業(yè)貸款擔保合同4篇
- 2025年農藥生產設備租賃與維修服務合同4篇
- 2025年度環(huán)保技術轉移與應用合同4篇
- 2025年度個人住宅抵押貸款服務合同2篇
- 2025年度倉儲物流廠房項目投資合作合同樣本3篇
- 二零二五年度櫥柜行業(yè)展會參展合同范本7篇
- 2025年現代廚房設備租賃與維護承包協議4篇
- 2025年度打井工程地質鉆孔數據采集協議4篇
- 副總經理招聘面試題與參考回答(某大型國企)2024年
- PDCA循環(huán)提高護士培訓率
- 2024-2030年中國智慧水務行業(yè)應用需求分析發(fā)展規(guī)劃研究報告
- 《獅子王》電影賞析
- 河北省保定市定州市2025屆高二數學第一學期期末監(jiān)測試題含解析
- 中醫(yī)護理人文
- 2024-2030年中國路亞用品市場銷售模式與競爭前景分析報告
- 貨物運輸安全培訓課件
- 前端年終述職報告
- 2024小說推文行業(yè)白皮書
- 市人民醫(yī)院關于開展“改善就醫(yī)感受提升患者體驗主題活動”2023-2025年實施方案及資料匯編
評論
0/150
提交評論