2024屆北京海淀十一校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁(yè)
2024屆北京海淀十一校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁(yè)
2024屆北京海淀十一校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁(yè)
2024屆北京海淀十一校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁(yè)
2024屆北京海淀十一校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆北京海淀十一校中考適應(yīng)性考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于點(diǎn)A、B,CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D,若PA=6,則△PCD的周長(zhǎng)為()A.8 B.6 C.12 D.102.(3分)學(xué)校要組織足球比賽.賽制為單循環(huán)形式(每?jī)申?duì)之間賽一場(chǎng)).計(jì)劃安排21場(chǎng)比賽,應(yīng)邀請(qǐng)多少個(gè)球隊(duì)參賽?設(shè)邀請(qǐng)x個(gè)球隊(duì)參賽.根據(jù)題意,下面所列方程正確的是()A.B.C.D.3.如圖,將△OAB繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到△OCD,若OA=4,∠AOB=35°,則下列結(jié)論錯(cuò)誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=44.已知二次函數(shù)y=(x+m)2–n的圖象如圖所示,則一次函數(shù)y=mx+n與反比例函數(shù)y=的圖象可能是()A. B. C. D.5.如圖,AB為⊙O的直徑,C、D為⊙O上的點(diǎn),若AC=CD=DB,則cos∠CAD=()A. B. C. D.6.如圖1是2019年4月份的日歷,現(xiàn)用一長(zhǎng)方形在日歷表中任意框出4個(gè)數(shù)(如圖2),下列表示a,b,c,d之間關(guān)系的式子中不正確的是()A.a(chǎn)﹣d=b﹣c B.a(chǎn)+c+2=b+d C.a(chǎn)+b+14=c+d D.a(chǎn)+d=b+c7.若關(guān)于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..8.如圖,將△ABC沿DE,EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數(shù)為()A.38° B.39° C.42° D.48°9.夏新同學(xué)上午賣(mài)廢品收入13元,記為+13元,下午買(mǎi)舊書(shū)支出9元,記為()元.A.+4B.﹣9C.﹣4D.+910.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東30°方向上的B處,這時(shí),B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile11.估計(jì)﹣÷2的運(yùn)算結(jié)果在哪兩個(gè)整數(shù)之間()A.0和1 B.1和2 C.2和3 D.3和412.據(jù)統(tǒng)計(jì),2015年廣州地鐵日均客運(yùn)量均為人次,將用科學(xué)記數(shù)法表示為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.因式分解:x2﹣4=.14.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,則AE=_______.15.反比例函數(shù)y=的圖象是雙曲線,在每一個(gè)象限內(nèi),y隨x的增大而減小,若點(diǎn)A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關(guān)系為_(kāi)_________.(用“<”連接)16.小明擲一枚均勻的骰子,骰子的六個(gè)面上分別刻有1,2,3,4,5,6點(diǎn),得到的點(diǎn)數(shù)為奇數(shù)的概率是.17.已知反比例函數(shù)y=在第二象限內(nèi)的圖象如圖,經(jīng)過(guò)圖象上兩點(diǎn)A、E分別引y軸與x軸的垂線,交于點(diǎn)C,且與y軸與x軸分別交于點(diǎn)M、B.連接OC交反比例函數(shù)圖象于點(diǎn)D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_(kāi)____.18.請(qǐng)寫(xiě)出一個(gè)開(kāi)口向下,并且與y軸交于點(diǎn)(0,1)的拋物線的表達(dá)式_________三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長(zhǎng).20.(6分)已知點(diǎn)P,Q為平面直角坐標(biāo)系xOy中不重合的兩點(diǎn),以點(diǎn)P為圓心且經(jīng)過(guò)點(diǎn)Q作⊙P,則稱點(diǎn)Q為⊙P的“關(guān)聯(lián)點(diǎn)”,⊙P為點(diǎn)Q的“關(guān)聯(lián)圓”.(1)已知⊙O的半徑為1,在點(diǎn)E(1,1),F(xiàn)(﹣,),M(0,-1)中,⊙O的“關(guān)聯(lián)點(diǎn)”為_(kāi)_____;(2)若點(diǎn)P(2,0),點(diǎn)Q(3,n),⊙Q為點(diǎn)P的“關(guān)聯(lián)圓”,且⊙Q的半徑為,求n的值;(3)已知點(diǎn)D(0,2),點(diǎn)H(m,2),⊙D是點(diǎn)H的“關(guān)聯(lián)圓”,直線y=﹣x+4與x軸,y軸分別交于點(diǎn)A,B.若線段AB上存在⊙D的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍.21.(6分)如圖,在正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊上的動(dòng)點(diǎn),且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點(diǎn)E、F、G、H運(yùn)動(dòng)過(guò)程中,判斷直線EG是否經(jīng)過(guò)某一個(gè)定點(diǎn),如果是,請(qǐng)證明你的結(jié)論;如果不是,請(qǐng)說(shuō)明理由22.(8分)為了解朝陽(yáng)社區(qū)歲居民最喜歡的支付方式,某興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:求參與問(wèn)卷調(diào)查的總?cè)藬?shù).補(bǔ)全條形統(tǒng)計(jì)圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).23.(8分)班級(jí)的課外活動(dòng),學(xué)生們都很積極.梁老師在某班對(duì)同學(xué)們進(jìn)行了一次關(guān)于“我喜愛(ài)的體育項(xiàng)目”的調(diào)査,下面是他通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:調(diào)查了________名學(xué)生;補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)為_(kāi)_______;學(xué)校將舉辦運(yùn)動(dòng)會(huì),該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹(shù)狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.24.(10分)若一個(gè)三位數(shù)的十位數(shù)字比個(gè)位數(shù)字和百位數(shù)字都大,則稱這個(gè)數(shù)為“傘數(shù)”.現(xiàn)從1,2,3,4這四個(gè)數(shù)字中任取3個(gè)數(shù),組成無(wú)重復(fù)數(shù)字的三位數(shù).(1)請(qǐng)畫(huà)出樹(shù)狀圖并寫(xiě)出所有可能得到的三位數(shù);(2)甲、乙二人玩一個(gè)游戲,游戲規(guī)則是:若組成的三位數(shù)是“傘數(shù)”,則甲勝;否則乙勝.你認(rèn)為這個(gè)游戲公平嗎?試說(shuō)明理由.25.(10分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長(zhǎng)線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)26.(12分)拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸正半軸交于點(diǎn)C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點(diǎn),連接AC,PC,若∠PCO=3∠ACO,求點(diǎn)P的橫坐標(biāo);(2)如圖2,D為x軸下方拋物線上一點(diǎn),連DA,DB,若∠BDA+2∠BAD=90°,求點(diǎn)D的縱坐標(biāo).27.(12分)先化簡(jiǎn),再求值:(x﹣2﹣)÷,其中x=.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

由切線長(zhǎng)定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點(diǎn)A、B,CD切⊙O于點(diǎn)E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長(zhǎng)為12,故選:C.【點(diǎn)睛】本題主要考查切線的性質(zhì),利用切線長(zhǎng)定理求得PA=PB、AC=CE和BD=ED是解題的關(guān)鍵.2、B.【解析】試題分析:設(shè)有x個(gè)隊(duì),每個(gè)隊(duì)都要賽(x﹣1)場(chǎng),但兩隊(duì)之間只有一場(chǎng)比賽,由題意得:,故選B.考點(diǎn):由實(shí)際問(wèn)題抽象出一元二次方程.3、D【解析】

由△OAB繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據(jù)此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項(xiàng);由∠AOB=35°,∠AOC=60°可判斷B選項(xiàng),據(jù)此可得答案.【詳解】解:∵△OAB繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項(xiàng)正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項(xiàng)正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項(xiàng)正確.

故選D.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.②對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等及等邊三角形的判定和性質(zhì).4、C【解析】試題解析:觀察二次函數(shù)圖象可知:∴一次函數(shù)y=mx+n的圖象經(jīng)過(guò)第一、二、四象限,反比例函數(shù)的圖象在第二、四象限.故選D.5、D【解析】

根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進(jìn)而求出它的余弦值.【詳解】解:===,故選D.【點(diǎn)睛】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.6、A【解析】

觀察日歷中的數(shù)據(jù),用含a的代數(shù)式表示出b,c,d的值,再將其逐一代入四個(gè)選項(xiàng)中,即可得出結(jié)論.【詳解】解:依題意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,選項(xiàng)A符合題意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,選項(xiàng)B不符合題意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,選項(xiàng)C不符合題意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,選項(xiàng)D不符合題意.故選:A.【點(diǎn)睛】考查了列代數(shù)式,利用含a的代數(shù)式表示出b,c,d是解題的關(guān)鍵.7、A【解析】

根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.【點(diǎn)睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.8、A【解析】分析:根據(jù)翻折的性質(zhì)得出∠A=∠DOE,∠B=∠FOE,進(jìn)而得出∠DOF=∠A+∠B,利用三角形內(nèi)角和解答即可.詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故選A.點(diǎn)睛:本題考查了三角形內(nèi)角和定理、翻折的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用這些知識(shí)解決問(wèn)題,學(xué)會(huì)把條件轉(zhuǎn)化的思想,屬于中考??碱}型.9、B【解析】

收入和支出是兩個(gè)相反的概念,故兩個(gè)數(shù)字分別為正數(shù)和負(fù)數(shù).【詳解】收入13元記為+13元,那么支出9元記作-9元【點(diǎn)睛】本題主要考查了正負(fù)數(shù)的運(yùn)用,熟練掌握正負(fù)數(shù)的概念是本題的關(guān)鍵.10、B【解析】

如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.11、D【解析】

先估算出的大致范圍,然后再計(jì)算出÷2的大小,從而得到問(wèn)題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點(diǎn)睛】本題主要考查的是二次根式的混合運(yùn)算,估算無(wú)理數(shù)的大小,利用夾逼法估算出的大小是解題的關(guān)鍵.12、D【解析】

科學(xué)記數(shù)法就是將一個(gè)數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開(kāi)始,在首位非零的后面加上小數(shù)點(diǎn),再乘以10的n次冪.【詳解】解:6

590

000=6.59×1.故選:D.【點(diǎn)睛】本題考查學(xué)生對(duì)科學(xué)記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點(diǎn):因式分解-運(yùn)用公式法14、5【解析】∵BD⊥AC于D,∴∠ADB=90°,∴sinA=.設(shè)BD=,則AB=AC=,在Rt△ABD中,由勾股定理可得:AD=,∴CD=AC-AD=,∵在Rt△BDC中,BD2+CD2=BC2,∴,解得(不合題意,舍去),∴AB=10,AD=8,BD=6,∵BE平分∠ABD,∴,∴AE=5.點(diǎn)睛:本題有兩個(gè)解題關(guān)鍵點(diǎn):(1)利用sinA=,設(shè)BD=,結(jié)合其它條件表達(dá)出CD,把條件集中到△BDC中,結(jié)合BC=由勾股定理解出,從而可求出相關(guān)線段的長(zhǎng);(2)要熟悉“三角形角平分線分線段成比例定理:三角形的內(nèi)角平分線分對(duì)邊所得線段與這個(gè)角的兩邊對(duì)應(yīng)成比例”.15、y2<y1<y1.【解析】

先根據(jù)反比例函數(shù)的增減性判斷出2-m的符號(hào),再根據(jù)反比例函數(shù)的性質(zhì)判斷出此函數(shù)圖象所在的象限,由各點(diǎn)橫坐標(biāo)的值進(jìn)行判斷即可.【詳解】∵反比例函數(shù)y=的圖象是雙曲線,在每一個(gè)象限內(nèi),y隨x的增大而減小,∴2?m>0,∴此函數(shù)的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是熟練的掌握列反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征.16、.【解析】

根據(jù)題意可知,擲一次骰子有6個(gè)可能結(jié)果,而點(diǎn)數(shù)為奇數(shù)的結(jié)果有3個(gè),所以點(diǎn)數(shù)為奇數(shù)的概率為.考點(diǎn):概率公式.17、1.【解析】連結(jié)AD,過(guò)D點(diǎn)作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.18、(答案不唯一)【解析】

根據(jù)二次函數(shù)的性質(zhì),拋物線開(kāi)口向下a<0,與y軸交點(diǎn)的縱坐標(biāo)即為常數(shù)項(xiàng),然后寫(xiě)出即可.【詳解】∵拋物線開(kāi)口向下,并且與y軸交于點(diǎn)(0,1)∴二次函數(shù)的一般表達(dá)式中,a<0,c=1,∴二次函數(shù)表達(dá)式可以為:(答案不唯一).【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì),掌握開(kāi)口方向、與y軸的交點(diǎn)與二次函數(shù)二次項(xiàng)系數(shù)、常數(shù)項(xiàng)的關(guān)系是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見(jiàn)解析;(2)15.【解析】

(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問(wèn)題.【詳解】(1)證明:連結(jié)OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結(jié)CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【點(diǎn)睛】考查切線的性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活綜合運(yùn)用所學(xué)知識(shí)解決問(wèn)題.20、(1)F,M;(1)n=1或﹣1;(3)≤m≤或≤m≤.【解析】

(1)根據(jù)定義,認(rèn)真審題即可解題,(1)在直角三角形PHQ中勾股定理解題即可,(3)當(dāng)⊙D與線段AB相切于點(diǎn)T時(shí),由sin∠OBA=,得DT=DH1=,進(jìn)而求出m1=即可,②當(dāng)⊙D過(guò)點(diǎn)A時(shí),連接AD.由勾股定理得DA==DH1=即可解題.【詳解】解:(1)∵OF=OM=1,∴點(diǎn)F、點(diǎn)M在⊙上,∴F、M是⊙O的“關(guān)聯(lián)點(diǎn)”,故答案為F,M.(1)如圖1,過(guò)點(diǎn)Q作QH⊥x軸于H.∵PH=1,QH=n,PQ=.∴由勾股定理得,PH1+QH1=PQ1,即11+n1=()1,解得,n=1或﹣1.(3)由y=﹣x+4,知A(3,0),B(0,4)∴可得AB=5①如圖1(1),當(dāng)⊙D與線段AB相切于點(diǎn)T時(shí),連接DT.則DT⊥AB,∠DTB=90°∵sin∠OBA=,∴可得DT=DH1=,∴m1=,②如圖1(1),當(dāng)⊙D過(guò)點(diǎn)A時(shí),連接AD.由勾股定理得DA==DH1=.綜合①②可得:≤m≤或≤m≤.【點(diǎn)睛】本題考查圓的新定義問(wèn)題,三角函數(shù)和勾股定理的應(yīng)用,難度較大,分類討論,遷移知識(shí)理解新定義是解題關(guān)鍵.21、(1)見(jiàn)解析;(2)直線EG經(jīng)過(guò)一個(gè)定點(diǎn),這個(gè)定點(diǎn)為正方形的中心(AC、BD的交點(diǎn));理由見(jiàn)解析.【解析】分析:(1)由正方形的性質(zhì)得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH證出AH=CF,由SAS證明△AEH≌△CGF即可求解;(2)連接AC、EG,交點(diǎn)為O;先證明△AOE≌△COG,得出OA=OC,證出O為對(duì)角線AC、BD的交點(diǎn),即O為正方形的中心.詳解:(1)證明:∵四邊形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH與△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直線EG經(jīng)過(guò)一個(gè)定點(diǎn),這個(gè)定點(diǎn)為正方形的中心(AC、BD的交點(diǎn));理由如下:連接AC、EG,交點(diǎn)為O;如圖所示:∵四邊形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O為AC的中點(diǎn),∵正方形的對(duì)角線互相平分,∴O為對(duì)角線AC、BD的交點(diǎn),即O為正方形的中心.點(diǎn)睛:考查了正方形的性質(zhì)與判定、全等三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),有一定難度,特別是(2)中,需要通過(guò)作輔助線證明三角形全等才能得出結(jié)果.22、(1)參與問(wèn)卷調(diào)查的總?cè)藬?shù)為500人;(2)補(bǔ)全條形統(tǒng)計(jì)圖見(jiàn)解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】

(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問(wèn)卷調(diào)查的總?cè)藬?shù),即可求出結(jié)論;

(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問(wèn)卷調(diào)查的總?cè)藬?shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計(jì)圖補(bǔ)充完整即可得出結(jié)論;

(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結(jié)論.【詳解】(1)(人.答:參與問(wèn)卷調(diào)查的總?cè)藬?shù)為500人.(2)(人.補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用樣本估計(jì)總體,解題的關(guān)鍵是:(1)觀察統(tǒng)計(jì)圖找出數(shù)據(jù),再列式計(jì)算;(2)通過(guò)計(jì)算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總?cè)藬?shù),估算出喜歡微信支付方式的人數(shù).23、50見(jiàn)解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學(xué)生數(shù);(2)用學(xué)生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計(jì)算;(4)列出樹(shù)狀圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項(xiàng)目所占的人數(shù)=50×18%=9(名),所以其它項(xiàng)目所占人數(shù)=50﹣15﹣9﹣16=10(名)補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(3)“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫(huà)樹(shù)狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,概率的計(jì)算.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息及掌握概率的計(jì)算方法是解決問(wèn)題的關(guān)鍵.24、(1)見(jiàn)解析(2)不公平。理由見(jiàn)解析【解析】解:(1)畫(huà)樹(shù)狀圖得:所有得到的三位數(shù)有24個(gè),分別為:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。(2)這個(gè)游戲不公平。理由如下:∵組成的三位數(shù)中是“傘數(shù)”的有:132,142,143,231,241,243,341,342,共有8個(gè),∴甲勝的概率為824=1∵甲勝的概率≠乙勝的概率,∴這個(gè)游戲不公平。(1)首先根據(jù)題意畫(huà)出樹(shù)狀圖,由樹(shù)狀圖即可求得所有可能得到的三位數(shù)。(2)由(1),可求得甲勝和乙勝的概率,比較是否相等即可得到答案。25、見(jiàn)解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;

應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,

∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.

∵∠A=∠F,

∴∠BCD=∠ECG.

∴∠BCD-∠ECD=∠ECG-∠ECD,

即∠BCE=∠DCG.

在△BCE

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論