![河南省信陽市傳流店鄉(xiāng)中學(xué)高三數(shù)學(xué)文模擬試題含解析_第1頁](http://file4.renrendoc.com/view12/M00/32/3A/wKhkGWY8tpGAe5uLAAFcL7ifzNA762.jpg)
![河南省信陽市傳流店鄉(xiāng)中學(xué)高三數(shù)學(xué)文模擬試題含解析_第2頁](http://file4.renrendoc.com/view12/M00/32/3A/wKhkGWY8tpGAe5uLAAFcL7ifzNA7622.jpg)
![河南省信陽市傳流店鄉(xiāng)中學(xué)高三數(shù)學(xué)文模擬試題含解析_第3頁](http://file4.renrendoc.com/view12/M00/32/3A/wKhkGWY8tpGAe5uLAAFcL7ifzNA7623.jpg)
![河南省信陽市傳流店鄉(xiāng)中學(xué)高三數(shù)學(xué)文模擬試題含解析_第4頁](http://file4.renrendoc.com/view12/M00/32/3A/wKhkGWY8tpGAe5uLAAFcL7ifzNA7624.jpg)
![河南省信陽市傳流店鄉(xiāng)中學(xué)高三數(shù)學(xué)文模擬試題含解析_第5頁](http://file4.renrendoc.com/view12/M00/32/3A/wKhkGWY8tpGAe5uLAAFcL7ifzNA7625.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省信陽市傳流店鄉(xiāng)中學(xué)高三數(shù)學(xué)文模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.的值為()A.B.C.D.參考答案:B
考點:二倍角的正弦.專題:計算題.分析:把所求的式子提取后,利用二倍角的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡后,即可求出值.解答:解:=×2=sin=.故選B點評:此題考查學(xué)生靈活運(yùn)用二倍角的正弦函數(shù)公式,特殊角的三角函數(shù)值化簡求值,是一道基礎(chǔ)題.2.半徑為的球面上有四點,兩兩互相垂直,則面積之和的最大值為A.8B.16C.32D.64參考答案:C3.已知集合A={1,2,3,4},,則A∩B=(
)A.{1}
B.{4}
C.{1,3}
D.{1,4}參考答案:D4.平面四邊形中,,,將其沿對角線折成四面體,使平面平面,若四面體頂點在同一個球面上,則該球的體積為(
)A.
B.
C.
D.參考答案:A略5.的展開式中,常數(shù)項為15,則n的值可以為
(
)。高考資源網(wǎng)
(A)3
(B)4
(C)5
(D)6參考答案:D略6.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期為π,且其圖象向左平移個單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象()A.關(guān)于直線x=對稱 B.關(guān)于直線x=對稱C.關(guān)于點(,0)對稱 D.關(guān)于點(,0)對稱參考答案:C【考點】函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】利用正弦函數(shù)的周期性、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律、誘導(dǎo)公式,求得f(x)的解析式,再利用正弦函數(shù)的圖象的對稱性,得出結(jié)論.【解答】解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期為π,∴=π,∴ω=2.把其圖象向左平移個單位后得到函數(shù)g(x)=cosωx=sin(2x++φ)的圖象,∴+φ=kπ+,k∈Z,∴φ=﹣,∴f(x)=sin(2x﹣).由于當(dāng)x=時,函數(shù)f(x)=0,故A不滿足條件,而C滿足條件;令x=,求得函數(shù)f(x)=sin=,故B、D不滿足條件,故選:C.7.已知﹑均為非零向量,條件
條件的夾角為銳角,則是成立的A.充要條件
B.充分而不必要的條件C.必要而不充分的條件
D.既不充分也不必要的條件參考答案:答案:C8.命題“若,則”的逆否命題是()A.若,則
B.若,則C.若,則
D.若,則參考答案:因為“若,則”的逆否命題為“若,則”,所以“若α=,則tanα=1”的逆否命題是“若tanα≠1,則α≠”.9.函數(shù)的反函數(shù)
.
參考答案:略10.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x∈(﹣∞,0]時,f(x)為減函數(shù),若a=f(20.3),,c=f(log25),則a,b,c的大小關(guān)系是()A.a(chǎn)>b>c B.c>b>a C.c>a>b D.a(chǎn)>c>b參考答案:B【考點】對數(shù)值大小的比較.【專題】計算題;函數(shù)思想;定義法;函數(shù)的性質(zhì)及應(yīng)用.【分析】由題意可知f(x)在[0,+∞)為增函數(shù),根據(jù)函數(shù)的單調(diào)性即可判斷.【解答】解:函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x∈(﹣∞,0]時,f(x)為減函數(shù),∴f(x)在[0,+∞)為增函數(shù),∵=f(﹣2)=f(2),1<20.3<2<log25,∴c>b>a,故選:B.【點評】考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大小.二、填空題:本大題共7小題,每小題4分,共28分11.設(shè)函數(shù)為奇函數(shù),則********
.參考答案:12.在120個零件中,一級品24個,二級品36個,三級品60個,用系統(tǒng)抽樣方法從中抽取量為20的樣本,則三級品a被抽到的可能性為_________.參考答案:13.已知函數(shù)滿足,當(dāng)時,在區(qū)間上,函數(shù)恰有一個零點,則實數(shù)的取值范圍是__________.參考答案:【知識點】函數(shù)零點的判定定理.B9
解析:當(dāng)時,,則.在坐標(biāo)系內(nèi)畫出分段函數(shù)圖象:由題意可知:.當(dāng)直線與曲線相切時,解得;所以的取值范圍是.故答案為:【思路點撥】根據(jù)題意畫出圖形,結(jié)合.當(dāng)直線與曲線相切時,可解得;進(jìn)而求出的取值范圍。14.等比數(shù)列的前項和為,且,則
.
參考答案:15.太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美,定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,則下列有關(guān)說法中:①對于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,都不能為偶函數(shù);②函數(shù)是圓的一個太極函數(shù);③直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù);④若函數(shù)是圓的太極函數(shù),則所有正確的是__________.參考答案:(2)(3)(4).對①顯然錯誤,如圖對②,點(0,1)均為兩曲線的對稱中心,且f(x)=sinx+1能把圓一分為二,正確對③,直線(m+1)x?(2m+1)y?1=0恒過定點(2,1),滿足題意。對于(4)函數(shù)為奇函數(shù),與圓的交點恒坐標(biāo)為(?1,1),∴且,∴,令,得得t=1即x=±1;對,當(dāng)k=0時顯然無解,△<0即0<k2<4時也無解,即k∈(?2,2)時兩曲線僅有兩個交點,函數(shù)能把圓一分為二,且周長和面積均等分。若k=±2時,函數(shù)圖象與圓有4個交點,若k2>4時,函數(shù)圖象與圓有6個交點,均不能把圓一分為二。故所有正確的是(2)(3)(4)故答案為:(2)(3)(4)16.在平面直角坐標(biāo)系xoy中,以ox軸為始邊作角,角的終邊經(jīng)過點.則____參考答案:【分析】根據(jù)任意角三角函數(shù)定義可得;根據(jù),利用二倍角公式即可求得結(jié)果.【詳解】由題意得:本題正確結(jié)果:【點睛】本題考查三角恒等變換中的三角函數(shù)值的求解問題,涉及到誘導(dǎo)公式的應(yīng)用、任意角三角函數(shù)的定義、二倍角公式應(yīng)用等知識.
17.已知正四棱柱ABCD-A1B1C1D1的底面邊長為2,側(cè)棱,P為上底面A1B1C1D1上的動點,給出下列四個結(jié)論:①若,則滿足條件的P點有且只有一個;②若,則點P的軌跡是一段圓弧;③若PD∥平面ACB1,則DP長的最小值為2;④若PD∥平面ACB1,且,則平面BDP截正四棱柱ABCD-A1B1C1D1的外接球所得平面圖形的面積為.其中所有正確結(jié)論的序號為
.參考答案:
①②④三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(12分)已知均在橢圓上,直線、分別過橢圓的左右焦點、,當(dāng)時,有.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上的任一點,為圓的任一條直徑,求的最大值.參考答案:
解析:(Ⅰ)因為,所以有所以為直角三角形;…………2分則有所以,…………3分又,………4分在中有即,解得所求橢圓方程為…………6分
(Ⅱ)從而將求的最大值轉(zhuǎn)化為求的最大值…………8分是橢圓上的任一點,設(shè),則有即又,所以………10分而,所以當(dāng)時,取最大值故的最大值為…………12分19.(本小題滿分10分)【選修4—1:幾何證明選講】
如圖6,在正△ABC中,點D,E分別在邊AC,AB上,且AD=AC,AE=AB,BD,CE相交于點F。
(I)求證:A,E,F(xiàn),D四點共圓;
(Ⅱ)若正△ABC的邊長為2,求,A,E,F(xiàn),D所在圓的半徑.參考答案:(Ⅰ)證明:,.在正△中,,,又,,△BAD≌△CBE,,即,所以,,,四點共圓.…………(5分)(Ⅱ)解:如圖6,取的中點,連結(jié),則.,,,,△AGD為正三角形,,即,所以點是△AED外接圓的圓心,且圓的半徑為.由于,,,四點共圓,即,,,四點共圓,其半徑為.…(10分)
20.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)為偶函數(shù),且其圖象上相鄰兩對稱軸之間的距離為π.(Ⅰ)求函數(shù)f(x)的表達(dá)式.(Ⅱ)若sinα+f(α)=,求的值.參考答案:考點:三角函數(shù)的周期性及其求法;同角三角函數(shù)基本關(guān)系的運(yùn)用.專題:綜合題.分析:(I)函數(shù)是偶函數(shù),求出?,利用圖象上相鄰兩對稱軸之間的距離為π,求出ω,即可求得函數(shù)f(x)的表達(dá)式.(II)利用兩角和的正弦以及弦切互化,化簡為sinαcosα,應(yīng)用,求出所求結(jié)果即可.解答:解:(I)∵f(x)為偶函數(shù)∴sin(﹣ωx+?)=sin(ωx+?)即2sinωxcos?=0恒成立∴cos?=0,又∵0≤?≤π,∴(3分)又其圖象上相鄰對稱軸之間的距離為π∴T=2π∴ω=1∴f(x)=cosx(6分)(II)∵原式=(10分)又∵,∴(11分)即,故原式=(12分)點評:本題考查三角函數(shù)的周期性及其求法,同角三角函數(shù)基本關(guān)系的運(yùn)用,考查計算能力,是基礎(chǔ)題.21.(本小題滿分12分)在ABC中,C-A=,
sinB=。(I)求sinA的值;
(II)設(shè)AC=,求ABC的面積。參考答案:【思路】(1)依據(jù)三角函數(shù)恒等變形可得關(guān)于的式子,這之中要運(yùn)用到倍角公式;(2)應(yīng)用正弦定理可得出邊長,進(jìn)而用面積公式可求出.解析:(1)∵∴∴∴又
∴(2)如圖,由正弦定理得∴∴.22.如圖所示,在三棱錐中,平面平面,,,,.(1)證明:平面;(2)若二面角的平面角的大小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年堅果蜂蜜烤制行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年戶外足球場行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年數(shù)字繪畫體驗館行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 定向排布銀納米線透明導(dǎo)電薄膜的制備及性能研究
- 牛乳酪蛋白亞組分分離及配比調(diào)控與消化性研究
- 基于平衡計分卡的農(nóng)業(yè)銀行HJ分行績效評價體系研究
- 數(shù)學(xué)課后分層作業(yè)實施存在問題及優(yōu)化策略研究
- 海洋意識融入高中地理教學(xué)策略研究
- 基于空間句法理論的昭馀古城公共空間設(shè)計研究
- 特殊教育新手教師角色沖突與調(diào)適
- 自動化設(shè)備項目評估報告模板范文
- 商標(biāo)法基礎(chǔ)知識
- 2025年高考物理一輪復(fù)習(xí)之機(jī)械振動
- 人教版五年級數(shù)學(xué)上冊專項計算題12套(每日一練)
- 新課程關(guān)鍵詞
- 消防設(shè)施操作員報名承諾書
- CPIM BSCM__v3_0_VC(課堂PPT)
- 雀巢面試的開放性問題
- 會議審批表模板
- 空調(diào)線路安裝施工方案與技術(shù)措施
- 中藥飲片車間的GMP改造設(shè)計
評論
0/150
提交評論