版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
懷遠縣聯(lián)考2023-2024學(xué)年中考考前最后一卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.以下各圖中,能確定的是()A. B. C. D.2.若實數(shù)m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<23.如圖,將△ABC沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數(shù)為()A.38° B.39° C.42° D.48°4.2017年我國大學(xué)生畢業(yè)人數(shù)將達到7490000人,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×1075.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.6.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項中的A. B. C. D.7.方程的解是()A. B. C. D.8.圖為小明和小紅兩人的解題過程.下列敘述正確的是()計算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確9.下列方程有實數(shù)根的是()A. B.C.x+2x?1=0 D.10.已知關(guān)于x的不等式3x﹣m+1>0的最小整數(shù)解為2,則實數(shù)m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB是⊙O的切線,B為切點,AC經(jīng)過點O,與⊙O分別相交于點D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.12.完全相同的3個小球上面分別標有數(shù)-2、-1、1,將其放入一個不透明的盒子中后搖勻,再從中隨機摸球兩次(第一次摸出球后放回搖勻),兩次摸到的球上數(shù)之和是負數(shù)的概率是________.13.計算:2(a-b)+3b=___________.14.函數(shù)的圖象不經(jīng)過第__________象限.15.如果m,n互為相反數(shù),那么|m+n﹣2016|=___________.16.閱讀材料:設(shè)=(x1,y1),=(x2,y2),如果∥,則x1?y2=x2?y1.根據(jù)該材料填空:已知=(2,3),=(4,m),且∥,則m=_____.三、解答題(共8題,共72分)17.(8分)為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如圖所示的尚不完整的統(tǒng)計圖:根據(jù)以上統(tǒng)計圖,解答下列問題:本次接受調(diào)查的市民共有人;扇形統(tǒng)計圖中,扇形B的圓心角度數(shù)是;請補全條形統(tǒng)計圖;若該市“上班族”約有15萬人,請估計乘公交車上班的人數(shù).18.(8分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結(jié)果保留根號)19.(8分)閱讀下列材料:數(shù)學(xué)課上老師布置一道作圖題:已知:直線l和l外一點P.求作:過點P的直線m,使得m∥l.小東的作法如下:作法:如圖2,(1)在直線l上任取點A,連接PA;(2)以點A為圓心,適當長為半徑作弧,分別交線段PA于點B,直線l于點C;(3)以點P為圓心,AB長為半徑作弧DQ,交線段PA于點D;(4)以點D為圓心,BC長為半徑作弧,交弧DQ于點E,作直線PE.所以直線PE就是所求作的直線m.老師說:“小東的作法是正確的.”請回答:小東的作圖依據(jù)是________.20.(8分)旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費)(2)當每輛車的日租金為多少元時,每天的凈收入最多?21.(8分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;從中任意抽取1個球恰好是紅球的概率是;學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.22.(10分)如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.求樓間距AB;若男生樓共30層,層高均為3m,請通過計算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,,,23.(12分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應(yīng)建在離A站多少千米的地方?24.為了掌握我市中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師赴我市某地選取一個水平相當?shù)某跞昙夁M行調(diào)研,命題教師將隨機抽取的部分學(xué)生成績(得分為整數(shù),滿分為160分)分為5組:第一組85~100;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計后得到如圖1和如圖2所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:(1)本次調(diào)查共隨機抽取了該年級多少名學(xué)生?并將頻數(shù)分布直方圖補充完整;(2)若將得分轉(zhuǎn)化為等級,規(guī)定:得分低于100分評為“D”,100~130分評為“C”,130~145分評為“B”,145~160分評為“A”,那么該年級1600名學(xué)生中,考試成績評為“B”的學(xué)生大約有多少名?(3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學(xué)談?wù)勛鲱}的感想,請你用列表或畫樹狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
逐一對選項進行分析即可得出答案.【詳解】A中,利用三角形外角的性質(zhì)可知,故該選項錯誤;B中,不能確定的大小關(guān)系,故該選項錯誤;C中,因為同弧所對的圓周角相等,所以,故該選項正確;D中,兩直線不平行,所以,故該選項錯誤.故選:C.【點睛】本題主要考查平行線的性質(zhì)及圓周角定理的推論,掌握圓周角定理的推論是解題的關(guān)鍵.2、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標大于-2,當m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標小于-1,∴-2<m<-1.故選A.考點:1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.3、A【解析】分析:根據(jù)翻折的性質(zhì)得出∠A=∠DOE,∠B=∠FOE,進而得出∠DOF=∠A+∠B,利用三角形內(nèi)角和解答即可.詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故選A.點睛:本題考查了三角形內(nèi)角和定理、翻折的性質(zhì)等知識,解題的關(guān)鍵是靈活運用這些知識解決問題,學(xué)會把條件轉(zhuǎn)化的思想,屬于中考??碱}型.4、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】7490000=7.49×106.故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、D【解析】
先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.6、D【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域為[0,3],開口向上的二次函數(shù)圖象;故選D.【點睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.7、D【解析】
按照解分式方程的步驟進行計算,注意結(jié)果要檢驗.【詳解】解:經(jīng)檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結(jié)果要檢驗.8、D【解析】
直接利用分式的加減運算法則計算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點睛】此題主要考查了分式的加減運算,正確進行通分運算是解題關(guān)鍵.9、C【解析】分析:根據(jù)方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項不符合題意;B.∵≥0,∴=﹣1無解,故本選項不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實數(shù)根,故本選項符合題意;D.解分式方程=,可得x=1,經(jīng)檢驗x=1是分式方程的增根,故本選項不符合題意.故選C.點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.10、A【解析】
先解出不等式,然后根據(jù)最小整數(shù)解為2得出關(guān)于m的不等式組,解之即可求得m的取值范圍.【詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數(shù)解2,∴1≤<2,解得:4≤m<7,故選A.【點睛】本題考查了一元一次不等式的整數(shù)解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.12、【解析】
畫樹狀圖列出所有等可能結(jié)果,從中找到能兩次摸到的球上數(shù)之和是負數(shù)的結(jié)果,根據(jù)概率公式計算可得.【詳解】解:畫樹狀圖如下:由樹狀圖可知共有9種等可能結(jié)果,其中兩次摸到的球上數(shù)之和是負數(shù)的有6種結(jié)果,所以兩次摸到的球上數(shù)之和是負數(shù)的概率為,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.13、2a+b.【解析】
先去括號,再合并同類項即可得出答案.【詳解】原式=2a-2b+3b=2a+b.故答案為:2a+b.14、三.【解析】
先根據(jù)一次函數(shù)判斷出函數(shù)圖象經(jīng)過的象限,進而可得出結(jié)論.【詳解】解:∵一次函數(shù)中,此函數(shù)的圖象經(jīng)過一、二、四象限,不經(jīng)過第三象限,故答案為:三.【點睛】本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)中,當,時,函數(shù)圖象經(jīng)過一、二、四象限.15、1.【解析】試題分析:先用相反數(shù)的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數(shù),∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點:1.絕對值的意義;2.相反數(shù)的性質(zhì).16、6【解析】根據(jù)題意得,2m=3×4,解得m=6,故答案為6.三、解答題(共8題,共72分)17、(1)1;(2)43.2°;(3)條形統(tǒng)計圖如圖所示:見解析;(4)估計乘公交車上班的人數(shù)為6萬人.【解析】
(1)根據(jù)D組人數(shù)以及百分比計算即可.(2)根據(jù)圓心角度數(shù)=360°×百分比計算即可.(3)求出A,C兩組人數(shù)畫出條形圖即可.(4)利用樣本估計總體的思想解決問題即可.【詳解】(1)本次接受調(diào)查的市民共有:50÷25%=1(人),故答案為1.(2)扇形統(tǒng)計圖中,扇形B的圓心角度數(shù)=360°×=43.2°;故答案為:43.2°(3)C組人數(shù)=1×40%=80(人),A組人數(shù)=1﹣24﹣80﹣50﹣16=30(人).條形統(tǒng)計圖如圖所示:(4)15×40%=6(萬人).答:估計乘公交車上班的人數(shù)為6萬人.【點睛】本題考查條形統(tǒng)計圖,扇形統(tǒng)計圖,樣本估計總體等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.18、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】
(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質(zhì)得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉(zhuǎn)的性質(zhì),即可判斷出△ACD≌△BCE'即可得出結(jié)論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結(jié)論.【詳解】(1)當CC'=時,四邊形MCND'是菱形.理由:由平移的性質(zhì)得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當α≠180°時,由旋轉(zhuǎn)的性質(zhì)得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關(guān)系得,AP<AC+CP,∴當點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(1)的關(guān)鍵是四邊形MCND'是平行四邊形,解(2)的關(guān)鍵是判斷出點A,C,P三點共線時,AP最大.19、內(nèi)錯角相等,兩直線平行【解析】
根據(jù)內(nèi)錯角相等,兩直線平行即可判斷.【詳解】∵∠EPA=∠CAP,∴m∥l(內(nèi)錯角相等,兩直線平行).故答案為:內(nèi)錯角相等,兩直線平行.【點睛】本題考查了作圖﹣復(fù)雜作圖,平行線的判定等知識,解題的關(guān)鍵是熟練掌握五種基本作圖,屬于中考??碱}型.20、(1)每輛車的日租金至少應(yīng)為25元;(2)當每輛車的日租金為175元時,每天的凈收入最多是5025元.【解析】試題分析:(1)觀光車全部租出每天的凈收入=出租自行車的總收入﹣管理費,由凈收入為正列出不等式求解即可;(2)由函數(shù)解析式是分段函數(shù),在每一段內(nèi)求出函數(shù)最大值,比較得出函數(shù)的最大值.試題解析:(1)由題意知,若觀光車能全部租出,則0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍數(shù),∴每輛車的日租金至少應(yīng)為25元;(2)設(shè)每輛車的凈收入為y元,當0<x≤100時,y1=50x﹣1100,∵y1隨x的增大而增大,∴當x=100時,y1的最大值為50×100﹣1100=3900;當x>100時,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,當x=175時,y2的最大值為5025,5025>3900,故當每輛車的日租金為175元時,每天的凈收入最多是5025元.考點:二次函數(shù)的應(yīng)用.21、(1)必然,不可能;(2);(3)此游戲不公平.【解析】
(1)直接利用必然事件以及怒不可能事件的定義分別分析得出答案;(2)直接利用概率公式求出答案;(3)首先畫出樹狀圖,進而利用概率公式求出答案.【詳解】(1)“從中任意抽取1個球不是紅球就是白球”是必然事件,“從中任意抽取1個球是黑球”是不可能事件;故答案為必然,不可能;(2)從中任意抽取1個球恰好是紅球的概率是:;故答案為;(3)如圖所示:,由樹狀圖可得:一共有20種可能,兩球同色的有8種情況,故選擇甲的概率為:;則選擇乙的概率為:,故此游戲不公平.【點睛】此題主要考查了游戲公平性,正確列出樹狀圖是解題關(guān)鍵.22、(1)的長為50m;(2)冬至日20層包括20層以下會受到擋光的影響,春分日6層包括6層以下會受到擋光的影響.【解析】
如圖,作于M,于則,設(shè)想辦法構(gòu)建方程即可解決問題.求出AC,AD,分兩種情形解決問題即可.【詳解】解:如圖,作于M,于則,設(shè).在中,,在中,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京航空航天大學(xué)《電動力學(xué)》2022-2023學(xué)年期末試卷
- 南京工業(yè)大學(xué)浦江學(xué)院《信號與系統(tǒng)》2021-2022學(xué)年第一學(xué)期期末試卷
- 南京工業(yè)大學(xué)浦江學(xué)院《設(shè)計語義與風格》2021-2022學(xué)年第一學(xué)期期末試卷
- 分數(shù)初步認識的說課稿
- 渠涵施工組織設(shè)計
- 《元次方程應(yīng)用》說課稿
- 《下雨啦》說課稿
- 南京工業(yè)大學(xué)浦江學(xué)院《發(fā)動機原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 租船合同范本(2篇)
- 紋身免責協(xié)議書(2篇)
- 2024年山東青島城投金融控股集團有限公司招聘筆試參考題庫含答案解析
- 工業(yè)機器人應(yīng)用4-裝配
- 中醫(yī)外治治療風濕病
- 美國實時總統(tǒng)大選報告
- 外貿(mào)業(yè)務(wù)與國際市場培訓(xùn)課件
- 信創(chuàng)醫(yī)療工作總結(jié)
- 教師教育教學(xué)質(zhì)量提升方案
- 滅火器的規(guī)格與使用培訓(xùn)
- 2024《中央企業(yè)安全生產(chǎn)治本攻堅三年行動方案(2024-2026年)》
- 紀錄片《園林》解說詞
- 《民間文學(xué)導(dǎo)論》課件
評論
0/150
提交評論