河南省平頂山市18-19學年2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第1頁
河南省平頂山市18-19學年2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第2頁
河南省平頂山市18-19學年2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第3頁
河南省平頂山市18-19學年2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第4頁
河南省平頂山市18-19學年2023-2024學年高考數(shù)學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

河南省平頂山市18-19學年2023-2024學年高考數(shù)學考前最后一卷預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知整數(shù)滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.2.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.3.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.64.是定義在上的增函數(shù),且滿足:的導函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.5.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.16.已知、是雙曲線的左右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點,若點在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.7.為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學運算最強8.設,滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為()A.60 B.80 C.90 D.1209.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,10.設全集,集合,,則()A. B. C. D.11.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.12.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題二、填空題:本題共4小題,每小題5分,共20分。13.記數(shù)列的前項和為,已知,且.若,則實數(shù)的取值范圍為________.14.記復數(shù)z=a+bi(i為虛數(shù)單位)的共軛復數(shù)為,已知z=2+i,則_____.15.已知為等差數(shù)列,為其前n項和,若,,則_______.16.實數(shù),滿足,如果目標函數(shù)的最小值為,則的最小值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.18.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a19.(12分)已知拋物線上一點到焦點的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內(nèi)的動點在點右側(cè),拋物線上第四象限內(nèi)的動點,滿足,求直線的斜率范圍.20.(12分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項和;(2)已知數(shù)列滿足:(?。θ我獾模唬áⅲθ我獾?,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.21.(12分)網(wǎng)絡看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機器故障進行查找詢問、診斷治療、檢查修復的一種新興的看病方式.因此,實地看病與網(wǎng)絡看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機構(gòu)調(diào)研了患者對網(wǎng)絡看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡看病,實地看病兩種方式進行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡看病、實地看病那種方式的滿意度更高?并說明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計網(wǎng)絡看病實地看病總計并根據(jù)列聯(lián)表判斷能否有的把握認為患者看病滿意度與看病方式有關?(3)從網(wǎng)絡看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

列出所有圓內(nèi)的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內(nèi)的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學生的應用能力.2、D【解析】

設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.3、B【解析】

利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.4、D【解析】

根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導數(shù)在函數(shù)單調(diào)性中的應用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設中給出的原函數(shù)與導數(shù)的關系構(gòu)建新函數(shù),本題屬于中檔題.5、A【解析】

由題意得到關于的等式,結(jié)合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數(shù)學應用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.6、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設過點F1與雙曲線的一條漸過線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點M(,﹣),∵點M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于a,b,c的方程或不等式,再根據(jù)a,b,c的關系消掉b得到a,c的關系式,建立關于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.7、D【解析】

根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.8、B【解析】

畫出可行域和目標函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學生的計算能力和綜合應用能力.9、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標函數(shù)的最小值為:4目標函數(shù)的范圍是[4,+∞).故選D.10、B【解析】

可解出集合,然后進行補集、交集的運算即可.【詳解】,,則,因此,.故選:B.【點睛】本題考查補集和交集的運算,涉及一元二次不等式的求解,考查運算求解能力,屬于基礎題.11、B【解析】

根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學思想方法,考查分析思考與解決問題的能力,屬于難題.12、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)遞推公式,以及之間的關系,即可容易求得,再根據(jù)數(shù)列的單調(diào)性,求得其最大值,則參數(shù)的范圍可求.【詳解】當時,,解得.所以.因為,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項為3,公差為2的等差數(shù)列,所以,則.令,則.當時,,數(shù)列單調(diào)遞減,而,,,故,即實數(shù)的取值范圍為.故答案為:.【點睛】本題考查由遞推公式求數(shù)列的通項公式,涉及數(shù)列單調(diào)性的判斷,屬綜合困難題.14、3﹣4i【解析】

計算得到z2=(2+i)2=3+4i,再計算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【點睛】本題考查了復數(shù)的運算,共軛復數(shù),意在考查學生的計算能力.15、1【解析】試題分析:因為是等差數(shù)列,所以,即,又,所以,所以.故答案為1.【考點】等差數(shù)列的基本性質(zhì)【名師點睛】在等差數(shù)列五個基本量,,,,中,已知其中三個量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項公式、前項和公式列出關于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應用.16、【解析】

作出不等式組對應的平面區(qū)域,利用目標函數(shù)的最小值為,確定出的值,進而確定出C點坐標,結(jié)合目標函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線的截距最大時,取得最小值,此時直線為,作出直線,交于A點,由圖象可知,目標函數(shù)在該點取得最小值,所以直線也過A點,由,得,代入,得,所以點C的坐標為.等價于點與原點連線的斜率,所以當點為點C時,取得最小值,最小值為,故答案為:.【點睛】該題考查的是有關線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標函數(shù)的意義求得最優(yōu)解,屬于中檔題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】

(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標方程;(2)寫出點M和點N的極坐標,根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標方程為,,極坐標方程.(2)由題可知,,當時,.【點睛】本題考查了參數(shù)方程、普通方程和極坐標方程的互化問題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.18、(I)an=2n-1,bn=【解析】

(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學生對于數(shù)列公式方法的綜合應用.19、(1)1;(2)【解析】

(1)根據(jù)點到焦點的距離為2,利用拋物線的定義得,再根據(jù)點在拋物線上有,列方程組求解,(2)設,根據(jù),再由,求得,當,即時,直線斜率不存在;當時,,令,利用導數(shù)求解,【詳解】(1)因為點到焦點的距離為2,即點到準線的距離為2,得,又,解得,所以拋物線方程為(2)設,由由,則當,即時,直線斜率不存在;當時,令,所以在上分別遞減則【點睛】本題主要考查拋物線定義及方程的應用,還考查了分類討論的思想和運算求解的能力,屬于中檔題,20、(1);(2)①;②證明見解析.【解析】

(1)由條件可得,結(jié)合等差數(shù)列的定義和通項公式、求和公式,即可得到所求;(2)①若,可令,運用已知條件和等比數(shù)列的性質(zhì),即可得到所求充要條件;②當,,,由等比數(shù)列的定義和不等式的性質(zhì),化簡變形,即可得到所求結(jié)論.【詳解】解:(1),,且為非零常數(shù),,,可得,可得數(shù)列的首項為,公差為的等差數(shù)列,可得,前項和為;(2)①若,可令,,且,即,,,,對任意的,,可得,可得,,數(shù)列是等比數(shù)列,則,,可得,,即,又,即有,即,數(shù)列是等比數(shù)列的充要條件為;②證明:對任意的,,,,,當,,,可得,即以為首項、為公比的等比數(shù)列;同理可得以為首項、為公比的等比數(shù)列;對任意的,,可得,即有,所以對,,,可得,,即且,則,可令,故數(shù)列,,,,,,,,,是以為首項,為公比的等比數(shù)列,其中.【點睛】本題考查新定義的理解和運用,考查等差數(shù)列和等比數(shù)列的定義和通項公式的運用,考查分類討論思想方法和推理、運算能力,屬于難題.21、(1)實地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】

(1)對實地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯(lián)表,再由獨立性檢驗得有的把握認為患者看病滿意度與看病方式有關;(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對實地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網(wǎng)絡看病中,有的患者滿意度評分低于80分;在實地看病中,有的患者評分高于80分,因此患者對實地看病滿意度更高.(ii)由莖葉圖可知:網(wǎng)絡看病滿意度評分的中位數(shù)為73分,實地看病評分的中位數(shù)為87分,因此患者對實地看病滿意度更高.(iii)由莖葉圖可知:網(wǎng)絡看病的滿意度評分平均分低于80分;實地看病的滿意度的評分平均分高于80分,因此患者對實地看病滿意度更高.(iV)由莖葉圖可知:網(wǎng)絡看病的滿意度評分在莖6上的最多,關于莖7大致呈對稱分布;實地看病的評分分布在莖8,上的最多,關于莖8大致呈對稱分布,又兩種看病方式打分的分布區(qū)間相同,故可以認為實地看病評分比網(wǎng)絡看病打分更高,因此實地看病的滿意度更高.以上給出了4種理由,考生答出其中任意一一種或其他合理理由均可得分.(2)參加網(wǎng)絡看病滿意度調(diào)查的15

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論