版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年河南省林州市林慮中學高三3月份模擬考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.252.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.3.已知為虛數單位,若復數,,則A. B.C. D.4.函數的定義域為()A. B. C. D.5.函數,,則“的圖象關于軸對稱”是“是奇函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.27.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統(tǒng)計繪制如圖,其中各項統(tǒng)計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶8.若函數在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.39.中,,為的中點,,,則()A. B. C. D.210.已知集合A,則集合()A. B. C. D.11.設函數(,)是上的奇函數,若的圖象關于直線對稱,且在區(qū)間上是單調函數,則()A. B. C. D.12.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若實數x,y滿足約束條件,則的最大值為________.14.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.15.若,則________,________.16.下圖是一個算法流程圖,則輸出的的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數方程為為參數),直線的參數方程(為參數),若直線的交點為,當變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系,設射線的極坐標方程為,,點為射線與曲線的交點,求點的極徑.18.(12分)在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.19.(12分)已知函數,.(1)當時,求不等式的解集;(2)當時,不等式恒成立,求實數的取值范圍.20.(12分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標原點在以為直徑的圓上,且,求的取值范圍.21.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.22.(10分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當的面積取得最大值時,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由公差d=-2可知數列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數列的公差為-2,可知數列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.2、A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.3、B【解析】
由可得,所以,故選B.4、C【解析】
函數的定義域應滿足故選C.5、B【解析】
根據函數奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數是上的奇函數,則,所以,函數的圖象關于軸對稱.所以,“是奇函數”“的圖象關于軸對稱”;若函數是上的偶函數,則,所以,函數的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數”.因此,“的圖象關于軸對稱”是“是奇函數”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.6、A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.7、D【解析】
根據給出的統(tǒng)計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統(tǒng)計圖表的認識和分析,這類題要認真分析圖表的內容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.8、B【解析】
根據極值點處的導數為零先求出的值,然后再按照求函數在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導數極值的性質以及利用導數求函數在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.9、D【解析】
在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應用,考查了學生的運算求解能力.10、A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.11、D【解析】
根據函數為上的奇函數可得,由函數的對稱軸及單調性即可確定的值,進而確定函數的解析式,即可求得的值.【詳解】函數(,)是上的奇函數,則,所以.又的圖象關于直線對稱可得,,即,,由函數的單調區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數,屬于中檔題.12、D【解析】
根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
作出可行域,可得當直線經過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯立,可求得點,當直線經過點時,.故答案為:3.【點睛】本題考查線性規(guī)劃,考查數形結合的數學思想,屬于基礎題.14、【解析】
設是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.15、【解析】
根據誘導公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導公式和二倍角公式,屬于簡單題.16、3【解析】
分析程序中各變量、各語句的作用,根據流程圖所示的順序,即可得出結論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經判斷,此時跳出循環(huán),輸出.故答案為:【點睛】本題考查了程序框圖的應用問題,解題的關鍵是對算法語句的理解,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)將兩直線化為普通方程,消去參數,即可求出曲線的普通方程;(2)設Q點的直角坐標系坐標為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯立直線,方程消去參數k,得曲線C的普通方程為整理得.(2)設Q點的直角坐標系坐標為,由可得代入曲線C的方程可得,解得(舍),所以點的極徑為.【點睛】本題主要考查了直線的參數方程化為普通方程,普通方程化為極坐標方程,極徑的求法,屬于中檔題.18、(1);(2)見解析【解析】
(1)根據拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設直線,的方程分別為和且,,,可得,,,的坐標,進而可得直線的方程,根據在直線上,可得,再分別求得,,即可得證;法二:設,,則,根據直線的斜率不為0,設出直線的方程為,聯立直線和拋物線的方程,結合韋達定理,分別求出,,化簡,即可得證.【詳解】(1)拋物線C的焦點坐標為,且該點在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由點F在線段上,可設直線,的方程分別為和且,,,則,,,.∴直線的方程為,即.又點在線段上,∴.∵P是的中點,∴∴,.由于,不重合,所以法二:設,,則當直線的斜率為0時,不符合題意,故可設直線的方程為聯立直線和拋物線的方程,得又,為該方程兩根,所以,,,.,由于,不重合,所以【點睛】本題考查拋物線的標準方程,考查拋物線的定義,考查直線與拋物線的位置關系,屬于中檔題.19、(1)(2)【解析】
(1)當時,,當或時,,所以可轉化為,解得,所以不等式的解集為.(2)因為,所以,所以,即,即.當時,因為,所以,不符合題意.當時,解可得,因為當時,不等式恒成立,所以,所以,解得,所以實數的取值范圍為.20、(1);(2).【解析】
(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設點、,聯立直線與橢圓的方程,列出韋達定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因為,,所以橢圓的方程為;(2)由,得.設、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因為,,所以.即,將其整理為.因為,所以,.所以,即.【點睛】本題考查橢圓方程的求法和直線與橢圓位置關系的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化,考查計算能力,屬于中等題.21、(1)見解析(2)【解析】
(1)設的中點為,連接.由展開圖可知,,.為的中點,則有,根據勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時,即是的中點建立空間直角坐標系,求出與平面的法向量利用公式即可求得結果.【詳解】(1)設AC的中點為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當OM最短時,即M是PA的中點時,最大.由平面ABC,,,,于是以OC,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標系,則,,設平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【點睛】本題考查面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版住宅小區(qū)物業(yè)合同轉讓及社區(qū)養(yǎng)老服務協議3篇
- 2025年度二零二五林業(yè)苗木培育及采購合作協議4篇
- 二零二五版租賃房屋租賃合同網絡安全保障協議3篇
- 二零二五年頂樓住宅買賣合同協議6篇
- 2025版綠色生態(tài)園區(qū)綠化養(yǎng)護工程承包合同3篇
- 二零二五年度智慧停車設施運營服務合同4篇
- 個人二手家具買賣合同2024年度交易規(guī)范3篇
- 棗莊建筑公司2025年度碎石采購合同2篇
- 二零二五版二手房裝修改造合同范本
- 2024酒店蔬菜供貨合同
- GB/T 45120-2024道路車輛48 V供電電壓電氣要求及試驗
- 財務報銷流程培訓課程
- 24年追覓在線測評28題及答案
- 春節(jié)慰問困難職工方案春節(jié)慰問困難職工活動
- 2024年全國職業(yè)院校技能大賽高職組(藥學技能賽項)考試題庫(含答案)
- 2024至2030年中國氫氧化鈣行業(yè)市場全景調查及發(fā)展趨勢分析報告
- 魚菜共生課件
- 《陸上風電場工程概算定額》NBT 31010-2019
- 初中物理八年級下冊《動能和勢能》教學課件
- 心肌梗死診療指南
- 原油脫硫技術
評論
0/150
提交評論