武漢市部分學校2024年高考數(shù)學倒計時模擬卷含解析_第1頁
武漢市部分學校2024年高考數(shù)學倒計時模擬卷含解析_第2頁
武漢市部分學校2024年高考數(shù)學倒計時模擬卷含解析_第3頁
武漢市部分學校2024年高考數(shù)學倒計時模擬卷含解析_第4頁
武漢市部分學校2024年高考數(shù)學倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

武漢市部分學校2024年高考數(shù)學倒計時模擬卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,則()A. B.C. D.2.若向量,則()A.30 B.31 C.32 D.333.已知,滿足條件(為常數(shù)),若目標函數(shù)的最大值為9,則()A. B. C. D.4.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直5.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.6.已知變量的幾組取值如下表:12347若與線性相關,且,則實數(shù)()A. B. C. D.7.設,,是非零向量.若,則()A. B. C. D.8.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點相同,則雙曲線漸近線方程為()A. B.C. D.9.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.10.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.11.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.1012.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓上的一個動點,,,設直線和分別與直線交于,兩點,若與的面積相等,則線段的長為______.14.已知,為正實數(shù),且,則的最小值為________________.15.設數(shù)列為等差數(shù)列,其前項和為,已知,,若對任意都有成立,則的值為__________.16.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設為實數(shù),在極坐標系中,已知圓()與直線相切,求的值.18.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實數(shù)解、、(),求證:.19.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.20.(12分)如圖,直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點,直線y=p2與(1)求p的值;(2)設A是直線y=p2上一點,直線AM2交拋物線于另一點M3,直線M1M21.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.22.(10分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.2、C【解析】

先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標運算,考查了學生的計算能力,屬于基礎題.3、B【解析】

由目標函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標函數(shù)的最大值為9,可得直線與直線的交點,使目標函數(shù)取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.4、D【解析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質(zhì)以及線面關系,還考查了理解辨析的能力,屬于中檔題.5、B【解析】

建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.6、B【解析】

求出,把坐標代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點可計算參數(shù)值.7、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數(shù)量積及平面幾何知識,又能考查學生的數(shù)形結合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.8、A【解析】

由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點睛】本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運算能力,屬于基礎題.9、B【解析】

根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.10、C【解析】

由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經(jīng)過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.11、C【解析】

根據(jù)直線過定點,采用數(shù)形結合,可得最多交點個數(shù),然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應用,數(shù)形結合,難點在于正確畫出圖像,同時掌握基礎函數(shù)的性質(zhì),屬難題.12、C【解析】

根據(jù)線面平行與垂直的判定與性質(zhì)逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先設點坐標,由三角形面積相等得出兩個三角形的邊之間的比例關系,這個比例關系又可用線段上點的坐標表示出來,從而可求得點的橫坐標,代入橢圓方程得縱坐標,然后可得.【詳解】如圖,設,,,由,得,由得,∴,解得,又在橢圓上,∴,,∴.故答案為:.【點睛】本題考查直線與橢圓相交問題,解題時由三角形面積相等得出線段長的比例關系,解題是由把線段長的比例關系用點的橫坐標表示.14、【解析】

由,為正實數(shù),且,可知,于是,可得,再利用基本不等式即可得出結果.【詳解】解:,為正實數(shù),且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【點睛】本題考查了基本不等式的性質(zhì)應用,恰當變形是解題的關鍵,屬于中檔題.15、【解析】

由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應的值,即可得解.【詳解】設等差數(shù)列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點睛】本題考查等差數(shù)列前項和最值的計算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計算能力,屬于中等題.16、【解析】

從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結果【詳解】從7人中隨機選出2人的總數(shù)有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數(shù)與概率的基本運用,熟悉組合數(shù)公式三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】

將圓和直線化成普通方程.再根據(jù)相切,圓心到直線的距離等于半徑,列等式方程,解方程即可.【詳解】解:將圓化成普通方程為,整理得.將直線化成普通方程為.因為相切,所以圓心到直線的距離等于半徑,即解得.【點睛】本題考查極坐標方程與普通方程的互化,考查直線與圓的位置關系,是基礎題.18、(1)①當時,在單調(diào)遞增,②當時,單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見解析【解析】

(1)先求解導函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構造函數(shù)分析出之間的關系,再構造函數(shù)分析出之間的關系,由此證明出.【詳解】(1),①當時,恒成立,則在單調(diào)遞增②當時,令得,解得,又,∴∴當時,,單調(diào)遞增;當時,,單調(diào)遞減;當時,,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個實數(shù)解,則法一:雙偏移法設,則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設,∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設,則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒有證明,扣3分)關于的證明:(1)且時,(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點睛】本題考查函數(shù)與倒導數(shù)的綜合應用,難度較難.(1)對于含參函數(shù)單調(diào)性的分析,可通過分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導數(shù)證明不等式常用方法:構造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達到證明不等式的目的.19、(1).(2).【解析】

(1)先根據(jù)空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設平面BFC1的法向量為=(x1,y1,z1).因為=,=,則取x1=4,得平面BFC1的一個法向量為=(4,0,1).設平面BCC1的法向量為=(x2,y2,z2).因為=,=(0,0,2),則取x2=得平面BCC1的一個法向量為=(,-1,0),所以cos〈〉==根據(jù)圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.20、(1)p=4;(2)OA?【解析】試題分析:(1)聯(lián)立直線的方程和拋物線的方程y=2x-2x2=2py,化簡寫出根與系數(shù)關系,由于直線y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入點的坐標化簡得4-(2+p2)?x試題解析:(1)由y=2x-2x2=2py設M1(x1,因為直線y=p2平分∠M所以y1-p所以4-(2+p2)?x1+x(2)由(1)知拋物線方程為x2=8y,且x1+x設M3(x3,x328所以x2+x整理得:x2由B,M3,②式兩邊同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA?考點:直線與圓錐曲線的位置關系.【方法點晴】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論