2024屆河南省安陽市安陽縣一中高考仿真卷數(shù)學(xué)試題含解析_第1頁
2024屆河南省安陽市安陽縣一中高考仿真卷數(shù)學(xué)試題含解析_第2頁
2024屆河南省安陽市安陽縣一中高考仿真卷數(shù)學(xué)試題含解析_第3頁
2024屆河南省安陽市安陽縣一中高考仿真卷數(shù)學(xué)試題含解析_第4頁
2024屆河南省安陽市安陽縣一中高考仿真卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆河南省安陽市安陽縣一中高考仿真卷數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}2.已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為()A. B. C. D.3.已知集合,則的值域?yàn)椋ǎ〢. B. C. D.4.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.85.已知,則,不可能滿足的關(guān)系是()A. B. C. D.6.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.7.已知集合,,則等于()A. B. C. D.8.已知是兩條不重合的直線,是兩個(gè)不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則9.()A. B. C. D.10.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個(gè)月的平均收入為萬元11.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過下面的隨機(jī)模擬方法來估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個(gè)數(shù)對,其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長的數(shù)對的個(gè)數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.12.函數(shù)f(x)=2x-3A.[32C.[32二、填空題:本題共4小題,每小題5分,共20分。13.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.14.已知函數(shù)是偶函數(shù),直線與函數(shù)的圖象自左向右依次交于四個(gè)不同點(diǎn)A,B,C,D.若AB=BC,則實(shí)數(shù)t的值為_________.15.設(shè)為定義在上的偶函數(shù),當(dāng)時(shí),(為常數(shù)),若,則實(shí)數(shù)的值為______.16.某高校組織學(xué)生辯論賽,六位評委為選手成績打出分?jǐn)?shù)的莖葉圖如圖所示,若去掉一個(gè)最高分,去掉一個(gè)最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面是菱形,對角線交于點(diǎn)為棱的中點(diǎn),.求證:(1)平面;(2)平面平面.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.19.(12分)在中,角,,所對的邊分別為,,,且.求的值;設(shè)的平分線與邊交于點(diǎn),已知,,求的值.20.(12分)設(shè)為拋物線的焦點(diǎn),,為拋物線上的兩個(gè)動點(diǎn),為坐標(biāo)原點(diǎn).(Ⅰ)若點(diǎn)在線段上,求的最小值;(Ⅱ)當(dāng)時(shí),求點(diǎn)縱坐標(biāo)的取值范圍.21.(12分)a,b,c分別為△ABC內(nèi)角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點(diǎn),求.22.(10分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時(shí),求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點(diǎn)睛】本題主要考查集合的交集運(yùn)算,屬于基礎(chǔ)題.2、D【解析】

列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個(gè),滿足條件的有7個(gè),相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個(gè),滿足的整數(shù)點(diǎn)有7個(gè),則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.3、A【解析】

先求出集合,化簡=,令,得由二次函數(shù)的性質(zhì)即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域?yàn)楣蔬xA【點(diǎn)睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題4、B【解析】

利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.5、C【解析】

根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點(diǎn)睛】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運(yùn)算,以及基本不等式:和不等式的應(yīng)用,屬于中檔題6、C【解析】

根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.7、B【解析】

解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.8、B【解析】

根據(jù)空間中線線、線面位置關(guān)系,逐項(xiàng)判斷即可得出結(jié)果.【詳解】A選項(xiàng),若,,,,則或與相交;故A錯;B選項(xiàng),若,,則,又,是兩個(gè)不重合的平面,則,故B正確;C選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故C錯;D選項(xiàng),若,,則或或與相交,又,是兩個(gè)不重合的平面,則或與相交;故D錯;故選B【點(diǎn)睛】本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于??碱}型.9、D【解析】

利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.10、D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項(xiàng)正確;結(jié)余最高為月份,為,故項(xiàng)正確;至月份的收入的變化率為至月份的收入的變化率相同,故項(xiàng)正確;前個(gè)月的平均收入為萬元,故項(xiàng)錯誤.綜上,故選.11、B【解析】

先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)椋际菂^(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長,則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個(gè)中檔題.12、A【解析】

根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因?yàn)楹瘮?shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點(diǎn)睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對實(shí)際問題:由實(shí)際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域?yàn)閍,b,則函數(shù)fgx二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關(guān)系,然后推出關(guān)系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點(diǎn)睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎(chǔ)題.14、【解析】

由是偶函數(shù)可得時(shí)恒有,根據(jù)該恒等式即可求得,,的值,從而得到,令,可解得,,三點(diǎn)的橫坐標(biāo),根據(jù)可列關(guān)于的方程,解出即可.【詳解】解:因?yàn)槭桥己瘮?shù),所以時(shí)恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因?yàn)椋?,即,解得,故答案為:.【點(diǎn)睛】本題考查函數(shù)奇偶性的性質(zhì)及二次函數(shù)的圖象、性質(zhì),考查學(xué)生的計(jì)算能力,屬中檔題.15、1【解析】

根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時(shí),(為常數(shù))求解.【詳解】因?yàn)闉槎x在上的偶函數(shù),所以,又因?yàn)楫?dāng)時(shí),,所以,所以實(shí)數(shù)的值為1.故答案為:1【點(diǎn)睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.16、【解析】

先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個(gè)數(shù)為83,85,87,95,且這四個(gè)數(shù)的平均數(shù),這四個(gè)數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點(diǎn)睛】本題主要考查莖葉圖的識別和統(tǒng)計(jì)量的計(jì)算,側(cè)重考查數(shù)據(jù)分析和數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解析】

(1)連結(jié)根據(jù)中位線的性質(zhì)證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結(jié)是菱形對角線的交點(diǎn),為的中點(diǎn),是棱的中點(diǎn),平面平面平面解:在菱形中,且為的中點(diǎn),,,平面平面,平面平面.【點(diǎn)睛】本題主要考查了線面平行與垂直的判定,屬于基礎(chǔ)題.18、(Ⅰ)直線的直角坐標(biāo)方程為;曲線的普通方程為;(Ⅱ).【解析】

(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標(biāo)方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點(diǎn)在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程的兩根,則有.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.19、;.【解析】

利用正弦定理化簡求值即可;利用兩角和差的正弦函數(shù)的化簡公式,結(jié)合正弦定理求出的值.【詳解】解:,由正弦定理得:,,,,,又,為三角形內(nèi)角,故,,則,故,;(2)平分,設(shè),則,,,,則,,又,則在中,由正弦定理:,.【點(diǎn)睛】本題考查正弦定理和兩角和差的正弦函數(shù)的化簡公式,二倍角公式,考查運(yùn)算能力,屬于基礎(chǔ)題.20、(Ⅰ)(Ⅱ)【解析】

(1)由拋物線的性質(zhì),當(dāng)軸時(shí),最小;(2)設(shè)點(diǎn),,分別代入拋物線方程和得到三個(gè)方程,消去,得到關(guān)于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標(biāo)準(zhǔn)方程,,根據(jù)拋物線的性質(zhì),當(dāng)軸時(shí),最小,最小值為,即為4.(2)由題意,設(shè)點(diǎn),,其中,.則,①,②因?yàn)椋?,,所?③由①②③,得,由,且,得,解不等式,得點(diǎn)縱坐標(biāo)的范圍為.【點(diǎn)睛】本題主要考查拋物線的方程和性質(zhì)和二次方程的解的問題,考查運(yùn)算能力,此類問題能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等,易錯點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯解.21、(1);(2)【解析】

(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計(jì)算b,可得結(jié)果.(2)計(jì)算,然后根據(jù)余弦定理,可得,利用平方關(guān)系,可得結(jié)果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設(shè)D靠近點(diǎn)B,則BD=DE=EC=1.,所以所以.【點(diǎn)睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.22、(1)見解析(2)見解析【解析】

(1)根據(jù)的導(dǎo)函數(shù)進(jìn)行分類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論