版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年吉林省梅河口市博文學(xué)校高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.3.已知點(diǎn),點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)為拋物線的焦點(diǎn),則的最小值為()A. B. C. D.44.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件5.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.6.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機(jī)到達(dá)小王所居住的樓下,則小王在樓下等候外賣小哥的時(shí)間不超過5分鐘的概率是()A. B. C. D.7.函數(shù)的定義域?yàn)椋ǎ〢. B. C. D.8.已知傾斜角為的直線與直線垂直,則()A. B. C. D.9.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件10.已知函數(shù)滿足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知展開式的二項(xiàng)式系數(shù)和與展開式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.80二、填空題:本題共4小題,每小題5分,共20分。13.對(duì)任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.14.若變量,滿足約束條件則的最大值為________.15.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.16.有2名老師和3名同學(xué),將他們隨機(jī)地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則對(duì)應(yīng)的排法有______種;______;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在角中,角A、B、C的對(duì)邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長(zhǎng).18.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對(duì)角線將折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線,上,且A,B,M,N四點(diǎn)共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.19.(12分)已知橢圓()經(jīng)過點(diǎn),離心率為,、、為橢圓上不同的三點(diǎn),且滿足,為坐標(biāo)原點(diǎn).(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.20.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設(shè)直線l:y=kx+m與橢圓C交于A,B兩點(diǎn).①若A為橢圓的上頂點(diǎn),M為線段AB中點(diǎn),連接OM并延長(zhǎng)交橢圓C于N,并且ON=62OM,求OB的長(zhǎng);②若原點(diǎn)O到直線l的距離為1,并且21.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.22.(10分)設(shè)等比數(shù)列的前項(xiàng)和為,若(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)在和之間插入個(gè)實(shí)數(shù),使得這個(gè)數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項(xiàng)和為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)?,且AB,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、D【解析】
由半圓面積之比,可求出兩個(gè)直角邊的長(zhǎng)度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點(diǎn)睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.3、D【解析】
如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.4、A【解析】
根據(jù)對(duì)數(shù)的運(yùn)算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點(diǎn)睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.5、D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.6、C【解析】
設(shè)出兩人到達(dá)小王的時(shí)間,根據(jù)題意列出不等式組,利用幾何概型計(jì)算公式進(jìn)行求解即可.【詳解】設(shè)小王和外賣小哥到達(dá)小王所居住的樓下的時(shí)間分別為,以12:00點(diǎn)為開始算起,則有,在平面直角坐標(biāo)系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時(shí)間不超過5分鐘的概率為:.故選:C【點(diǎn)睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學(xué)運(yùn)算能力.7、C【解析】
函數(shù)的定義域應(yīng)滿足故選C.8、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因?yàn)橹本€與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點(diǎn)睛】本題考查了相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計(jì)算能力,屬于基礎(chǔ)題.9、A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標(biāo)表示,屬于基礎(chǔ)題.10、B【解析】
結(jié)合函數(shù)的對(duì)應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對(duì)應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.11、B【解析】
依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過,再分別討論的正負(fù)進(jìn)一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對(duì)應(yīng)的平面區(qū)域,如圖所示:其中,直線過定點(diǎn),當(dāng)時(shí),不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,只需直線的斜率,解得.綜上可得實(shí)數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題12、D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.14、7【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標(biāo)函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當(dāng)直線過點(diǎn)時(shí),有最大值,.故答案為:.【點(diǎn)睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.15、【解析】
先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解.【詳解】由是單位向量.若,,設(shè),則,,又,則,則,則,又,所以,(當(dāng)或時(shí)取等)即的取值范圍是,,故答案為:,.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16、36;1.【解析】
的可能取值為0,1,2,3,對(duì)應(yīng)的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學(xué),將他們隨機(jī)地排成一行,用表示兩名老師之間的學(xué)生人數(shù),則的可能取值為0,1,2,3,對(duì)應(yīng)的排法有:.∴對(duì)應(yīng)的排法有36種;,,,,∴故答案為:36;1.【點(diǎn)睛】本題考查了排列、組合的應(yīng)用,離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)1.【解析】
(1)由正弦定理化簡(jiǎn)已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長(zhǎng)的值.【詳解】(1)由題意,在中,因?yàn)?,由正弦定理,可得sinAsinB=sinBcosA,又因?yàn)椋傻胹inB≠0,所以sinA=cosA,即:tanA=,因?yàn)锳∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長(zhǎng)a+b+c=5+7=1.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.18、(1)證明見解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因?yàn)?,所以,因?yàn)?/,且A、B、M、N四點(diǎn)共面,所以//平面.又平面平面,所以//.而,.(2)因?yàn)槠矫嫫矫?,且,所以平面,,因?yàn)?,所以平面,,因?yàn)?,平面與平面夾角為,所以,在中,易知N為的中點(diǎn),如圖,建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的一個(gè)法向量為,則由,令,得.設(shè)與平面所成角為,則.【點(diǎn)睛】本題考查線面平行的性質(zhì)定理以及線面角,熟練掌握利用建系的方法解決幾何問題,將幾何問題代數(shù)化,化繁為簡(jiǎn),屬中檔題.19、(1)證明見解析;(2).【解析】
(1)首先根據(jù)題中條件求出橢圓方程,設(shè)、、點(diǎn)坐標(biāo),根據(jù)利用坐標(biāo)表示出即可得證;(2)設(shè)直線方程,再與橢圓方程聯(lián)立利用韋達(dá)定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設(shè),,,由為的重心,;又因?yàn)?,,,,?)當(dāng)?shù)男甭什淮嬖跁r(shí):,,,代入橢圓得,,,當(dāng)?shù)男甭蚀嬖跁r(shí):設(shè)直線為,這里,由,,根據(jù)韋達(dá)定理有,,,故,代入橢圓方程有,又因?yàn)?,綜上,的范圍是.【點(diǎn)睛】本題主要考查了橢圓方程的求解,三角形重心的坐標(biāo)關(guān)系,直線與橢圓所交弦長(zhǎng),屬于一般題.20、(1)x22+y2【解析】
(1)根據(jù)橢圓的幾何性質(zhì)可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長(zhǎng)公式可求得弦長(zhǎng)AB,利用點(diǎn)到直線的距離公式求得原點(diǎn)到直線l的距離,從而可求得三角形面積,再用單調(diào)性求最值可得值域.【詳解】(1)因?yàn)閮山裹c(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成等腰直角三角形,所以a=2又由右準(zhǔn)線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設(shè)B(x1,y1∵ON=6因?yàn)辄c(diǎn)B,N都在橢圓上,所以x122+y12所以O(shè)B=x②由原點(diǎn)O到直線l的距離為1,得|m|1+k2聯(lián)立直線l的方程與橢圓C的方程:y=kx+mx2設(shè)A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因?yàn)镾=2λ(1-λ)在[并且當(dāng)λ=45時(shí),S=225所以△OAB的面積S的范圍為[10【點(diǎn)睛】圓錐曲線中最值與范圍問題的常見求法:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征和意義,則考慮利用圖形性質(zhì)來解決;(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時(shí)常從以下幾個(gè)方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用隱含或已知的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍;③利用基本不等式求出參數(shù)的取值范圍;④利用函數(shù)的值域的求法,確定參數(shù)的取值范圍.21、(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對(duì)其求導(dǎo)并表示,代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【初中生物】真菌-2024-2025學(xué)年七年級(jí)生物上冊(cè)同步教學(xué)課件(人教版2024)
- 【初中生物】微生物的分布-2024-2025學(xué)年七年級(jí)生物上冊(cè)同步備課課件(人教版2024)
- 2024就智能工廠建設(shè)與運(yùn)營(yíng)的合資合同
- 2024年度清雪業(yè)務(wù)承包合同
- 2024年度特許經(jīng)營(yíng)與加盟合同
- 2024建設(shè)工程的項(xiàng)目合作協(xié)議合同范本
- 2024個(gè)人小額貸款合同
- 2024股份合伙人合同范本
- 2024年工程設(shè)計(jì)合作伙伴協(xié)議
- 2024年度原材料采購擔(dān)保合同
- 新時(shí)代大中小學(xué)思政課一體化建設(shè)研究
- 工業(yè)自動(dòng)化系統(tǒng)集成項(xiàng)目驗(yàn)收方案
- 新教科版科學(xué)六年級(jí)上冊(cè)全冊(cè)實(shí)驗(yàn)匯總 (超全)
- 王洪圖黃帝內(nèi)經(jīng)80課時(shí)講稿
- 攤鋪機(jī)司機(jī)班組級(jí)安全教育試卷
- 重癥肌無力指南
- 限制被執(zhí)行人駕駛令申請(qǐng)書
- 項(xiàng)目主要施工管理人員情況
- 個(gè)人借條電子版模板
- 關(guān)于學(xué)習(xí)“國(guó)語普通話”發(fā)聲亮劍【三篇】
- 玻璃廠應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論