版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省沾益縣一中2024年高三一診考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.2.已知為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且,過點(diǎn)的動(dòng)直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),拋物線的準(zhǔn)線與軸的交點(diǎn)為.給出下列四個(gè)命題:①在拋物線上滿足條件的點(diǎn)僅有一個(gè);②若是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則的最小值為;③無論過點(diǎn)的直線在什么位置,總有;④若點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)在同一條直線上.其中所有正確命題的個(gè)數(shù)為()A.1 B.2 C.3 D.43.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.4.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時(shí),則圖中判斷框①處應(yīng)填入的是()A. B. C. D.5.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知集合,則()A. B.C. D.7.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.8.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.9.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.10.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.11.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.12.一艘海輪從A處出發(fā),以每小時(shí)24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點(diǎn)間的距離是()A.6海里 B.6海里 C.8海里 D.8海里二、填空題:本題共4小題,每小題5分,共20分。13.已知,則滿足的的取值范圍為_______.14.某市高三理科學(xué)生有名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取份試卷進(jìn)行分析,則應(yīng)從分以上的試卷中抽取的份數(shù)為__________.15.已知,,,的夾角為30°,,則_________.16.角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊經(jīng)過點(diǎn),則的值是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,角、、的對(duì)邊分別為,,,,.(1)若,求的值;(2)若,求的面積.18.(12分)在中,為邊上一點(diǎn),,.(1)求;(2)若,,求.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域;(2)的角的對(duì)邊分別為且,,求邊上的高的最大值.20.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.21.(12分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請(qǐng)分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長.22.(10分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.2、C【解析】
①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,通過分析可知當(dāng)三點(diǎn)共線時(shí)取最小值,由兩點(diǎn)間的距離公式,可求此時(shí)最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理,可知焦點(diǎn)坐標(biāo)的關(guān)系,進(jìn)而可求,從而可判斷出的關(guān)系;④:計(jì)算直線的斜率之差,可得兩直線斜率相等,進(jìn)而可判斷三點(diǎn)在同一條直線上.【詳解】解:對(duì)于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點(diǎn)有二個(gè),故①不正確;對(duì)于②,不妨設(shè),則關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,故,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立,故②正確;對(duì)于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點(diǎn)坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補(bǔ),所以,故③正確.對(duì)于④,由題意知,由③知,則,由,知,即三點(diǎn)在同一條直線上,故④正確.故選:C.【點(diǎn)睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點(diǎn)的斜率公式.本題的難點(diǎn)在于第二個(gè)命題,結(jié)合初中的“飲馬問題”分析出何時(shí)取最小值.3、A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.4、C【解析】
根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時(shí),結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.5、B【解析】
化簡復(fù)數(shù),由它是純虛數(shù),求得,從而確定對(duì)應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對(duì)應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.6、B【解析】
先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B【點(diǎn)睛】本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.7、C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)椋瞧娣桥己瘮?shù),排除;B.,值域?yàn)椋婧瘮?shù),排除;C.,值域?yàn)椋婧瘮?shù),滿足;D.,值域?yàn)?,非奇非偶函?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對(duì)于函數(shù)知識(shí)的綜合應(yīng)用.8、B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.9、B【解析】
先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時(shí),則不成立.則,,均為假.故選:B【點(diǎn)睛】本題考查復(fù)合命題的真假性,判斷簡單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.10、C【解析】試題分析:通過對(duì)以下四個(gè)四棱錐的三視圖對(duì)照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖11、B【解析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對(duì)任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.12、A【解析】
先根據(jù)給的條件求出三角形ABC的三個(gè)內(nèi)角,再結(jié)合AB可求,應(yīng)用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點(diǎn)睛】本題考查正弦定理的實(shí)際應(yīng)用,關(guān)鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關(guān)系,利用正余弦定理求解.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調(diào)性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點(diǎn)睛】本題考查分段函數(shù)的奇偶性與單調(diào)性的判定以及應(yīng)用,注意分析f(x)的奇偶性與單調(diào)性.14、【解析】
由題意結(jié)合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應(yīng)從分以上的試卷中抽取份.故答案為:.【點(diǎn)睛】本題考查正態(tài)分布曲線,屬于基礎(chǔ)題.15、1【解析】
由求出,代入,進(jìn)行數(shù)量積的運(yùn)算即得.【詳解】,存在實(shí)數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點(diǎn)睛】本題考查向量共線定理和平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.16、【解析】試題分析:由三角函數(shù)定義知,又由誘導(dǎo)公式知,所以答案應(yīng)填:.考點(diǎn):1、三角函數(shù)定義;2、誘導(dǎo)公式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)7(2)14【解析】
(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理解三角形,解題關(guān)鍵是掌握正弦定理邊化角,考查了分析能力和計(jì)算能力,屬于中檔題.18、(1);(2)4【解析】
(1),利用兩角差的正弦公式計(jì)算即可;(2)設(shè),在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設(shè),,在中,由正弦定理得,,∴,∴,∵,∴∴.【點(diǎn)睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學(xué)生的運(yùn)算求解能力,是一道容易題.19、(1).(2)【解析】
(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數(shù),當(dāng)時(shí),,.(2)中,,∴.由余弦定理可得,當(dāng)且僅當(dāng)時(shí),取等號(hào),即的最大值為3.再根據(jù),故當(dāng)取得最大值3時(shí),取得最大值為.【點(diǎn)睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當(dāng)?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.20、(1)證明見解析(2)【解析】
(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點(diǎn),由等腰三角形性質(zhì)可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標(biāo)系,以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值.【詳解】(1)如圖,設(shè)與相交于點(diǎn),連接,又為菱形,故,為的中點(diǎn).又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.不妨設(shè),則,,則,,,,,,設(shè)為平面的法向量,則即可取,設(shè)為平面的法向量,則即可取,所以.所以二面角的余弦值為0.【點(diǎn)睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理的應(yīng)用,以及利用向量法求二面角,意在考查學(xué)生的直觀想象能力,邏輯推理能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.21、(1).x2+y2=1.(2)16【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【點(diǎn)睛】本題考查了極坐標(biāo)方程和參數(shù)方程,圓的弦長,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.22、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式即可求出.【詳解】方程x2-5x+6=0的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 編程穿戴技術(shù)課程設(shè)計(jì)
- 二零二五年度個(gè)人獨(dú)資企業(yè)股權(quán)變更及財(cái)務(wù)顧問合同5篇
- 2025版劇本改編游戲保密合同樣本3篇
- 2025版勞動(dòng)合同主體變更與員工績效考核協(xié)議書3篇
- 北京經(jīng)貿(mào)職業(yè)學(xué)院《建筑工程招投標(biāo)沙盤》2023-2024學(xué)年第一學(xué)期期末試卷
- 北京經(jīng)濟(jì)技術(shù)職業(yè)學(xué)院《形體訓(xùn)練(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版航空航天研發(fā)工程師勞動(dòng)合同書2篇
- 稀硝酸防火防爆課程設(shè)計(jì)
- 2025年MLB棒球帽全球市場(chǎng)拓展及授權(quán)管理合同
- 2025版銷售合同標(biāo)的物詳細(xì)規(guī)定3篇
- 【9歷期末】安徽省淮北市2023-2024學(xué)年九年級(jí)上學(xué)期期末歷史試題
- 2024年度物流園區(qū)運(yùn)營承包合同范本3篇
- 第五單元第四節(jié) 全球發(fā)展與合作 教學(xué)實(shí)錄-2024-2025學(xué)年粵人版地理七年級(jí)上冊(cè)
- 貴州省部分學(xué)校2024-2025學(xué)年高三年級(jí)上冊(cè)10月聯(lián)考 化學(xué)試卷
- 期末綜合試卷(試題)2024-2025學(xué)年人教版數(shù)學(xué)五年級(jí)上冊(cè)(含答案)
- 2024-2025學(xué)年上學(xué)期武漢小學(xué)語文六年級(jí)期末模擬試卷
- 2023-2024學(xué)年貴州省貴陽外國語實(shí)驗(yàn)中學(xué)八年級(jí)(上)期末數(shù)學(xué)試卷(含答案)
- 廣東省廣州市越秀區(qū)2022-2023學(xué)年八年級(jí)上學(xué)期期末歷史試題(含答案)
- 2024年二級(jí)建造師繼續(xù)教育考核題及答案
- 房地產(chǎn)公司出納員年度工作總結(jié)
- GB/T 1038-2000塑料薄膜和薄片氣體透過性試驗(yàn)方法壓差法
評(píng)論
0/150
提交評(píng)論