青海省西寧市2024年中考數(shù)學(xué)猜題卷含解析_第1頁(yè)
青海省西寧市2024年中考數(shù)學(xué)猜題卷含解析_第2頁(yè)
青海省西寧市2024年中考數(shù)學(xué)猜題卷含解析_第3頁(yè)
青海省西寧市2024年中考數(shù)學(xué)猜題卷含解析_第4頁(yè)
青海省西寧市2024年中考數(shù)學(xué)猜題卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

青海省西寧市2024年中考數(shù)學(xué)猜題卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,A、B、C、D四個(gè)點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°2.如圖,⊙O是等邊△ABC的外接圓,其半徑為3,圖中陰影部分的面積是()A.π B. C.2π D.3π3.如圖所示的兩個(gè)四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°4.關(guān)于x的一元二次方程x2+3x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則A.m≤94B.m<945.如圖,扇形AOB中,OA=2,C為弧AB上的一點(diǎn),連接AC,BC,如果四邊形AOBC為菱形,則圖中陰影部分的面積為()A. B. C. D.6.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點(diǎn)在AD上,CD與QR相交于S點(diǎn),則四邊形RBCS的面積為()A.8 B. C. D.7.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.8.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長(zhǎng)也為2,且AC與DE在同一直線上,△ABC從C點(diǎn)與D點(diǎn)重合開(kāi)始,沿直線DE向右平移,直到點(diǎn)A與點(diǎn)E重合為止,設(shè)CD的長(zhǎng)為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是()A. B.C. D.9.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點(diǎn),CD與AB的交點(diǎn)為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:210.式子有意義的x的取值范圍是()A.且x≠1 B.x≠1 C. D.且x≠1二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.分解因式:=____12.如圖,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F(xiàn)分別是AB,CD的中點(diǎn),則EF=_____.13.如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)在軸的正半軸上,,過(guò)點(diǎn)作軸交直線于點(diǎn),若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),則的值為_(kāi)________________.14.如圖,已知正方形ABCD的邊長(zhǎng)為4,⊙B的半徑為2,點(diǎn)P是⊙B上的一個(gè)動(dòng)點(diǎn),則PD﹣PC的最大值為_(kāi)____.15.如圖,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG=cm,則EF+CF的長(zhǎng)為cm.16.如圖,已知點(diǎn)C為反比例函數(shù)上的一點(diǎn),過(guò)點(diǎn)C向坐標(biāo)軸引垂線,垂足分別為A、B,那么四邊形AOBC的面積為_(kāi)__________.三、解答題(共8題,共72分)17.(8分)兩個(gè)全等的等腰直角三角形按如圖方式放置在平面直角坐標(biāo)系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B.求k的值.把△OCD沿射線OB移動(dòng),當(dāng)點(diǎn)D落在y=圖象上時(shí),求點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).18.(8分)如圖,在長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b),且a、b滿足+|b﹣6|=0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O﹣C﹣B﹣A﹣O的線路移動(dòng).a(chǎn)=,b=,點(diǎn)B的坐標(biāo)為;當(dāng)點(diǎn)P移動(dòng)4秒時(shí),請(qǐng)指出點(diǎn)P的位置,并求出點(diǎn)P的坐標(biāo);在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸的距離為5個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.19.(8分)如圖,在△ABC中,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)E是CD邊的中點(diǎn),過(guò)點(diǎn)C作CF∥AB交AE的延長(zhǎng)線于點(diǎn)F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.20.(8分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).請(qǐng)畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△ABC;請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱的△ABC;在軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫(huà)出△PAB,并直接寫(xiě)出P的坐標(biāo).21.(8分)如圖,已知點(diǎn)E,F(xiàn)分別是?ABCD的對(duì)角線BD所在直線上的兩點(diǎn),BF=DE,連接AE,CF,求證:CF=AE,CF∥AE.22.(10分)如圖,中,,于,,為邊上一點(diǎn).(1)當(dāng)時(shí),直接寫(xiě)出,.(2)如圖1,當(dāng),時(shí),連并延長(zhǎng)交延長(zhǎng)線于,求證:.(3)如圖2,連交于,當(dāng)且時(shí),求的值.23.(12分)霧霾天氣嚴(yán)重影響市民的生活質(zhì)量。在今年寒假期間,某校九年級(jí)一班的綜合實(shí)踐小組學(xué)生對(duì)“霧霾天氣的主要成因”隨機(jī)調(diào)查了所在城市部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了下圖所示的不完整的統(tǒng)計(jì)圖表:組別霧霾天氣的主要成因百分比A工業(yè)污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請(qǐng)根據(jù)統(tǒng)計(jì)圖表回答下列問(wèn)題:本次被調(diào)查的市民共有多少人?并求和的值;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中扇形區(qū)域所對(duì)應(yīng)的圓心角的度數(shù);若該市有100萬(wàn)人口,請(qǐng)估計(jì)市民認(rèn)為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).24.計(jì)算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點(diǎn):1、平行線的性質(zhì);2、圓周角定理;3等腰三角形的性質(zhì)2、D【解析】

根據(jù)等邊三角形的性質(zhì)得到∠A=60°,再利用圓周角定理得到∠BOC=120°,然后根據(jù)扇形的面積公式計(jì)算圖中陰影部分的面積即可.【詳解】∵△ABC為等邊三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴圖中陰影部分的面積==3π.故選D.【點(diǎn)睛】本題考查了三角形的外接圓與外心、圓周角定理及扇形的面積公式,求得∠BOC=120°是解決問(wèn)題的關(guān)鍵.3、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對(duì)應(yīng)角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點(diǎn)睛】本題考核知識(shí)點(diǎn):相似多邊形.解題關(guān)鍵點(diǎn):理解相似多邊形性質(zhì).4、B【解析】試題分析:根據(jù)題意得△=32﹣4m>0,解得m<94故選B.考點(diǎn):根的判別式.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.5、D【解析】連接OC,過(guò)點(diǎn)A作AD⊥CD于點(diǎn)D,四邊形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等邊三角形,可得∠AOC=∠BOC=60°,故△ACO與△BOC為邊長(zhǎng)相等的兩個(gè)等邊三角形,再根據(jù)銳角三角函數(shù)的定義得出AD=OA?sin60°=2×=,因此可求得S陰影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故選D.點(diǎn)睛:本題考查的是扇形面積的計(jì)算,熟記扇形的面積公式及菱形的性質(zhì)是解答此題的關(guān)鍵.6、D【解析】

根據(jù)正方形的邊長(zhǎng),根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長(zhǎng)為4,正方形BPQR的邊長(zhǎng)為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關(guān)鍵.7、B【解析】先解不等式組中的每一個(gè)不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.

∴在數(shù)軸上可表示為.故選B.“點(diǎn)睛”不等式組的解集在數(shù)軸上表示的方法:把每個(gè)不等式的解集在數(shù)軸上表示出來(lái)(>,≥向右畫(huà);<,≤向左畫(huà)),在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.8、A【解析】

此題可分為兩段求解,即C從D點(diǎn)運(yùn)動(dòng)到E點(diǎn)和A從D點(diǎn)運(yùn)動(dòng)到E點(diǎn),列出面積隨動(dòng)點(diǎn)變化的函數(shù)關(guān)系式即可.【詳解】解:設(shè)CD的長(zhǎng)為與正方形DEFG重合部分圖中陰影部分的面積為當(dāng)C從D點(diǎn)運(yùn)動(dòng)到E點(diǎn)時(shí),即時(shí),.當(dāng)A從D點(diǎn)運(yùn)動(dòng)到E點(diǎn)時(shí),即時(shí),,與x之間的函數(shù)關(guān)系由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對(duì)應(yīng).故選A.【點(diǎn)睛】本題考查的動(dòng)點(diǎn)變化過(guò)程中面積的變化關(guān)系,重點(diǎn)是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.9、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進(jìn)而得出DF的長(zhǎng)和△DEF∽△CEA,再利用相似三角形的性質(zhì)求出即可.【詳解】連接DO,交AB于點(diǎn)F,∵D是的中點(diǎn),∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點(diǎn)睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質(zhì),根據(jù)已知得出△DEF∽△CEA是解題關(guān)鍵.10、A【解析】根據(jù)二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)和分式分母不為0的條件,要使在實(shí)數(shù)范圍內(nèi)有意義,必須且.故選A.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、x(y+2)(y-2)【解析】

原式提取x,再利用平方差公式分解即可.【詳解】原式=x(y2-4)=x(y+2)(y-2),故答案為x(y+2)(y-2).【點(diǎn)睛】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.12、3【解析】

延長(zhǎng)AC和BD,交于M點(diǎn),M、E、F三點(diǎn)共線,EF=MF-ME.【詳解】延長(zhǎng)AC和BD,交于M點(diǎn),M、E、F三點(diǎn)共線,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.【點(diǎn)睛】本題考查了直角三角形斜邊中線的性質(zhì).13、1【解析】

先求出直線y=x+2與坐標(biāo)軸的交點(diǎn)坐標(biāo),再由三角形的中位線定理求出CD,得到C點(diǎn)坐標(biāo).【詳解】解:令x=0,得y=x+2=0+2=2,

∴B(0,2),

∴OB=2,

令y=0,得0=x+2,解得,x=-6,

∴A(-6,0),

∴OA=OD=6,

∵OB∥CD,

∴CD=2OB=4,

∴C(6,4),

把c(6,4)代入y=(k≠0)中,得k=1,

故答案為:1.【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合,需要掌握求函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)方法,三角形的中位線定理,待定系數(shù)法.本題的關(guān)鍵是求出C點(diǎn)坐標(biāo).14、1【解析】分析:由PD?PC=PD?PG≤DG,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點(diǎn)G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?PC的值最大,最大值為DG==1.故答案為1點(diǎn)睛:本題考查圓綜合題、正方形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建相似三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,把問(wèn)題轉(zhuǎn)化為兩點(diǎn)之間線段最短解決,題目比較難,屬于中考?jí)狠S題.15、5【解析】分析:∵AF是∠BAD的平分線,∴∠BAF=∠FAD.∵ABCD中,AB∥DC,∴∠FAD=∠AEB.∴∠BAF=∠AEB.∴△BAE是等腰三角形,即BE=AB=6cm.同理可證△CFE也是等腰三角形,且△BAE∽△CFE.∵BC=AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.∵BG⊥AE,BG=cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.∴EF+CF=5cm.16、1【解析】

解:由于點(diǎn)C為反比例函數(shù)上的一點(diǎn),則四邊形AOBC的面積S=|k|=1.故答案為:1.三、解答題(共8題,共72分)17、(1)k=2;(2)點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為.【解析】

(1)根據(jù)題意求得點(diǎn)B的坐標(biāo),再代入求得k值即可;(2)設(shè)平移后與反比例函數(shù)圖象的交點(diǎn)為D′,由平移性質(zhì)可知DD′∥OB,過(guò)D′作D′E⊥x軸于點(diǎn)E,交DC于點(diǎn)F,設(shè)CD交y軸于點(diǎn)M(如圖),根據(jù)已知條件可求得點(diǎn)D的坐標(biāo)為(﹣1,1),設(shè)D′橫坐標(biāo)為t,則OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的長(zhǎng),即可得點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).【詳解】(1)∵△AOB和△COD為全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴點(diǎn)B坐標(biāo)為(,),代入得k=2;(2)設(shè)平移后與反比例函數(shù)圖象的交點(diǎn)為D′,由平移性質(zhì)可知DD′∥OB,過(guò)D′作D′E⊥x軸于點(diǎn)E,交DC于點(diǎn)F,設(shè)CD交y軸于點(diǎn)M,如圖,∵OC=OD=,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐標(biāo)為(﹣1,1),設(shè)D′橫坐標(biāo)為t,則OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函數(shù)圖象上,∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),∴D′(﹣1,+1),∴DD′=,即點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為.【點(diǎn)睛】本題是反比例函數(shù)與幾何的綜合題,求得點(diǎn)D′的坐標(biāo)是解決第(2)問(wèn)的關(guān)鍵.18、(1)4,6,(4,6);(2)點(diǎn)P在線段CB上,點(diǎn)P的坐標(biāo)是(2,6);(3)點(diǎn)P移動(dòng)的時(shí)間是2.5秒或5.5秒.【解析】試題分析:(1)根據(jù)可以求得的值,根據(jù)長(zhǎng)方形的性質(zhì),可以求得點(diǎn)的坐標(biāo);

(2)根據(jù)題意點(diǎn)從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著的線路移動(dòng),可以得到當(dāng)點(diǎn)移動(dòng)4秒時(shí),點(diǎn)的位置和點(diǎn)的坐標(biāo);

(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點(diǎn)移動(dòng)的時(shí)間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點(diǎn)B的坐標(biāo)是(4,6),故答案是:4,6,(4,6);(2)∵點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O?C?B?A?O的線路移動(dòng),∴2×4=8,∵OA=4,OC=6,∴當(dāng)點(diǎn)P移動(dòng)4秒時(shí),在線段CB上,離點(diǎn)C的距離是:8?6=2,即當(dāng)點(diǎn)P移動(dòng)4秒時(shí),此時(shí)點(diǎn)P在線段CB上,離點(diǎn)C的距離是2個(gè)單位長(zhǎng)度,點(diǎn)P的坐標(biāo)是(2,6);(3)由題意可得,在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸的距離為5個(gè)單位長(zhǎng)度時(shí),存在兩種情況,第一種情況,當(dāng)點(diǎn)P在OC上時(shí),點(diǎn)P移動(dòng)的時(shí)間是:5÷2=2.5秒,第二種情況,當(dāng)點(diǎn)P在BA上時(shí),點(diǎn)P移動(dòng)的時(shí)間是:(6+4+1)÷2=5.5秒,故在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸的距離為5個(gè)單位長(zhǎng)度時(shí),點(diǎn)P移動(dòng)的時(shí)間是2.5秒或5.5秒.19、(1)證明見(jiàn)解析;(2)四邊形BDCF是矩形,理由見(jiàn)解析.【解析】(1)證明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四邊形BDCF是矩形.證明:由(1)知DB=CF,又DB∥CF,∴四邊形BDCF為平行四邊形.∵AC=BC,AD=DB,∴CD⊥AB.∴四邊形BDCF是矩形.20、(1)圖形見(jiàn)解析;(2)圖形見(jiàn)解析;(3)圖形見(jiàn)解析,點(diǎn)P的坐標(biāo)為:(2,0)【解析】

(1)按題目的要求平移就可以了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)變化是:橫、縱坐標(biāo)都變?yōu)橄喾磾?shù),找到對(duì)應(yīng)點(diǎn)后按順序連接即可(3)AB的長(zhǎng)是不變的,要使△PAB的周長(zhǎng)最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點(diǎn),在直線上找一個(gè)點(diǎn),使這點(diǎn)到已知兩點(diǎn)的線段之和最小,方法是作A、B兩點(diǎn)中的某點(diǎn)關(guān)于該直線的對(duì)稱點(diǎn),然后連接對(duì)稱點(diǎn)與另一點(diǎn).【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點(diǎn)P的坐標(biāo)為:(2,0)【點(diǎn)睛】1、圖形的平移;2、中心對(duì)稱;3、軸對(duì)稱的應(yīng)用21、證明見(jiàn)解析【解析】

根據(jù)平行四邊形性質(zhì)推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根據(jù)SAS證兩三角形全等即可解決問(wèn)題.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠EBA=∠FDC,∵DE=BF,∴BE=DF,∵在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴AE=CF,∠E=∠F,∴AE∥CF.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定的應(yīng)用,解題的關(guān)鍵是準(zhǔn)確尋找全等三角形解決問(wèn)題.22、(1),;(2)證明見(jiàn)解析;(3).【解析】

(1)利用相似三角形的判定可得,列出比例式即可求出結(jié)論;(2)作交于,設(shè),則,根據(jù)平行線分線段成比例定理列出比例式即可求出AH和EH,然后根據(jù)平行線分線段成

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論