版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省莒縣2024屆中考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,半徑為1的圓O1與半徑為3的圓O2相內切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.42.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.243.如圖,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,則∠EDC等于()A.10° B.12.5° C.15° D.20°4.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,則下列結論:①a、b同號;②當x=1和x=3時,函數(shù)值相等;③4a+b=1;④當y=﹣2時,x的值只能取1;⑤當﹣1<x<5時,y<1.其中,正確的有()A.2個 B.3個 C.4個 D.5個5.在0,-2,5,,-0.3中,負數(shù)的個數(shù)是().A.1 B.2 C.3 D.46.如圖,在⊙O中,直徑CD⊥弦AB,則下列結論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D7.下列圖形中為正方體的平面展開圖的是()A. B.C. D.8.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.9.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°10.下列性質中菱形不一定具有的性質是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形11.一個盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.12.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把多項式9x3﹣x分解因式的結果是_____.14.如圖,直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,那么當y1>y2時,x的取值范圍是_____.15.關于的一元二次方程有兩個相等的實數(shù)根,則的值等于_____.16.不等式組的所有整數(shù)解的積為__________.17.如圖,正方形ABCD的邊長為2,點B與原點O重合,與反比例函數(shù)y=的圖像交于E、F兩點,若△DEF的面積為,則k的值_______.18.如圖,在⊙O中,直徑AB⊥弦CD,∠A=28°,則∠D=_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知P是⊙O外一點,PO交⊙O于點C,OC=CP=2,弦AB⊥OC,∠AOC的度數(shù)為60°,連接PB.求BC的長;求證:PB是⊙O的切線.20.(6分)我市某企業(yè)接到一批產品的生產任務,按要求必須在14天內完成.已知每件產品的出廠價為60元.工人甲第x天生產的產品數(shù)量為y件,y與x滿足如下關系:工人甲第幾天生產的產品數(shù)量為70件?設第x天生產的產品成本為P元/件,P與的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關系式,并求出第幾天時利潤最大,最大利潤是多少?21.(6分)自學下面材料后,解答問題。分母中含有未知數(shù)的不等式叫分式不等式。如:<0等。那么如何求出它們的解集呢?根據(jù)我們學過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負。其字母表達式為:若a>0,b>0,則>0;若a<0,b<0,則>0;若a>0,b<0,則<0;若a<0,b>0,則<0.反之:若>0,則或,(1)若<0,則___或___.(2)根據(jù)上述規(guī)律,求不等式>0的解集.22.(8分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?23.(8分)在數(shù)學上,我們把符合一定條件的動點所形成的圖形叫做滿足該條件的點的軌跡.例如:動點P的坐標滿足(m,m﹣1),所有符合該條件的點組成的圖象在平面直角坐標系xOy中就是一次函數(shù)y=x﹣1的圖象.即點P的軌跡就是直線y=x﹣1.(1)若m、n滿足等式mn﹣m=6,則(m,n﹣1)在平面直角坐標系xOy中的軌跡是;(2)若點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,求點P的軌跡;(3)若拋物線y=上有兩動點M、N滿足MN=a(a為常數(shù),且a≥4),設線段MN的中點為Q,求點Q到x軸的最短距離.24.(10分)如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結果保留π和根號).25.(10分)如圖,已知:△ABC中,AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE.求證:MD=ME.26.(12分)為節(jié)約用水,某市居民生活用水按階梯式水價計量,水價分為三個階梯,價格表如下表所示:某市自來水銷售價格表類別月用水量(立方米)供水價格(元/立方米)污水處理費(元/立方米)居民生活用水階梯一0~18(含18)1.901.00階梯二18~25(含25)2.85階梯三25以上5.70(注:居民生活用水水價=供水價格+污水處理費)(1)當居民月用水量在18立方米及以下時,水價是_____元/立方米.(2)4月份小明家用水量為20立方米,應付水費為:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)預計6月份小明家的用水量將達到30立方米,請計算小明家6月份的水費.(3)為了節(jié)省開支,小明家決定每月用水的費用不超過家庭收入的1%,已知小明家的平均月收入為7530元,請你為小明家每月用水量提出建議27.(12分)某校為表彰在“書香校園”活動中表現(xiàn)積極的同學,決定購買筆記本和鋼筆作為獎品.已知5個筆記本、2支鋼筆共需要100元;4個筆記本、7支鋼筆共需要161元(1)筆記本和鋼筆的單價各多少元?(2)恰好“五一”,商店舉行“優(yōu)惠促銷”活動,具體辦法如下:筆記本9折優(yōu)惠;鋼筆10支以上超出部分8折優(yōu)惠若買x個筆記本需要y1元,買x支鋼筆需要y2元;求y1、y2關于x的函數(shù)解析式;(3)若購買同一種獎品,并且該獎品的數(shù)量超過10件,請你分析買哪種獎品省錢.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.2、D【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數(shù)的混合運算,解答本題的關鍵是明確有理數(shù)的混合運算的計算方法.3、C【解析】試題分析:根據(jù)三角形的三線合一可求得∠DAC及∠ADE的度數(shù),根據(jù)∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故選C.考點:本題主要考查了等腰三角形的性質,三角形內角和定理點評:解答本題的關鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.4、A【解析】
根據(jù)二次函數(shù)的性質和圖象可以判斷題目中各個小題是否成立.【詳解】由函數(shù)圖象可得,
a>1,b<1,即a、b異號,故①錯誤,
x=-1和x=5時,函數(shù)值相等,故②錯誤,
∵-=2,得4a+b=1,故③正確,
由圖象可得,當y=-2時,x=1或x=4,故④錯誤,
由圖象可得,當-1<x<5時,y<1,故⑤正確,
故選A.【點睛】考查二次函數(shù)圖象與系數(shù)的關系,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.5、B【解析】
根據(jù)負數(shù)的定義判斷即可【詳解】解:根據(jù)負數(shù)的定義可知,這一組數(shù)中,負數(shù)有兩個,即-2和-0.1.故選B.6、B【解析】
先利用垂徑定理得到弧AD=弧BD,然后根據(jù)圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.【點睛】本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.7、C【解析】
利用正方體及其表面展開圖的特點依次判斷解題.【詳解】由四棱柱四個側面和上下兩個底面的特征可知A,B,D上底面不可能有兩個,故不是正方體的展開圖,選項C可以拼成一個正方體,故選C.【點睛】本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關鍵.8、D【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.9、A【解析】試題分析:根據(jù)五邊形的內角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內角與外角;三角形內角和定理.10、C【解析】
根據(jù)菱形的性質:①菱形具有平行四邊形的一切性質;②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質11、C【解析】
畫樹狀圖求出共有12種等可能結果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結果及符合題意的結果是本題的解題關鍵.12、A【解析】
根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【點睛】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關系是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x(3x+1)(3x﹣1)【解析】
提取公因式分解多項式,再根據(jù)平方差公式分解因式,從而得到答案.【詳解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案為x(3x+1)(3x-1).【點睛】本題主要考查了因式分解以及平方差公式,解本題的要點在于熟知多項式分解因式的相關方法.14、﹣1<x<2【解析】
根據(jù)圖象得出取值范圍即可.【詳解】解:因為直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,所以當y1>y2時,﹣1<x<2,故答案為﹣1<x<2【點睛】此題考查二次函數(shù)與不等式,關鍵是根據(jù)圖象得出取值范圍.15、【解析】分析:先根據(jù)根的判別式得到a-1=,把原式變形為,然后代入即可得出結果.詳解:由題意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案為-3.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△<0,方程沒有實數(shù)根;當△=0,方程有兩個,相等的實數(shù)根,也考查了一元二次方程的定義.16、1【解析】
解:,解不等式①得:,解不等式②得:,∴不等式組的整數(shù)解為﹣1,1,1…51,所以所有整數(shù)解的積為1,故答案為1.【點睛】本題考查一元一次不等式組的整數(shù)解,準確計算是關鍵,難度不大.17、1【解析】
利用對稱性可設出E、F的兩點坐標,表示出△DEF的面積,可求出k的值.【詳解】解:設AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點F(,2)代入解得:k=1,故答案為1.【點睛】本題主要考查反比例函數(shù)與正方形和三角形面積的運用,表示出E和F的坐標是關鍵.18、34°【解析】分析:首先根據(jù)垂徑定理得出∠BOD的度數(shù),然后根據(jù)三角形內角和定理得出∠D的度數(shù).詳解:∵直徑AB⊥弦CD,∴∠BOD=2∠A=56°,∴∠D=90°-56°=34°.點睛:本題主要考查的是圓的垂徑定理,屬于基礎題型.求出∠BOD的度數(shù)是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)BC=2;(2)見解析【解析】試題分析:(1)連接OB,根據(jù)已知條件判定△OBC的等邊三角形,則BC=OC=2;(2)欲證明PB是⊙O的切線,只需證得OB⊥PB即可.(1)解:如圖,連接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等邊三角形,∴BC=OC.又OC=2,∴BC=2;(2)證明:由(1)知,△OBC的等邊三角形,則∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半徑,∴PB是⊙O的切線.考點:切線的判定.20、(1)工人甲第12天生產的產品數(shù)量為70件;(2)第11天時,利潤最大,最大利潤是845元.【解析】分析:(1)根據(jù)y=70求得x即可;(2)先根據(jù)函數(shù)圖象求得P關于x的函數(shù)解析式,再結合x的范圍分類討論,根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質求得最值即可.本題解析:解:(1)若7.5x=70,得x=>4,不符合題意;則5x+10=70,解得x=12.答:工人甲第12天生產的產品數(shù)量為70件.(2)由函數(shù)圖象知,當0≤x≤4時,P=40,當4<x≤14時,設P=kx+b,將(4,40)、(14,50)代入,得解得∴P=x+36.①當0≤x≤4時,W=(60-40)·7.5x=150x,∵W隨x的增大而增大,∴當x=4時,W最大=600;②當4<x≤14時,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴當x=11時,W最大=845.∵845>600,∴當x=11時,W取得最大值845元.答:第11天時,利潤最大,最大利潤是845元.點睛:本題考查了一次函數(shù)的應用、二次函數(shù)的應用,解題的關鍵是理解題意,記住利潤=出廠價-成本,學會利用函數(shù)的性質解決最值問題.21、(1)或;(2)x>2或x<?1.【解析】
(1)根據(jù)兩數(shù)相除,異號得負解答;(2)先根據(jù)同號得正把不等式轉化成不等式組,然后根據(jù)一元一次不等式組的解法求解即可.【詳解】(1)若>0,則或;故答案為:或;(2)由上述規(guī)律可知,不等式轉化為或,所以,x>2或x<?1.【點睛】此題考查一元一次不等式組的應用,解題關鍵在于掌握掌握運算法則.22、0.34【解析】
(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.【詳解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵總人數(shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為0.3,4;補全統(tǒng)計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是:=.【點睛】本題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1);(2)y=x2;(3)點Q到x軸的最短距離為1.【解析】
(1)先判斷出m(n﹣1)=6,進而得出結論;(2)先求出點P到點A的距離和點P到直線y=﹣1的距離建立方程即可得出結論;(3)設出點M,N的坐標,進而得出點Q的坐標,利用MN=a,得出,即可得出結論.【詳解】(1)設m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐標系xOy中的軌跡是故答案為:;(2)∴點P(x,y)到點A(0,1),∴點P(x,y)到點A(0,1)的距離的平方為x2+(y﹣1)2,∵點P(x,y)到直線y=﹣1的距離的平方為(y+1)2,∵點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,∴x2+(y﹣1)2=(y+1)2,∴(3)設直線MN的解析式為y=kx+b,M(x1,y1),N(x2,y2),∴線段MN的中點為Q的縱坐標為∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴點Q到x軸的最短距離為1.【點睛】此題是二次函數(shù)綜合題,主要考查了點的軌跡的定義,兩點間的距離公式,中點坐標公式公式,根與系數(shù)的關系,確定出是解本題的關鍵.24、(1)見解析;(2)【解析】
(1)根據(jù)題意,可得△BOC的等邊三角形,進而可得∠BCO=∠BOC,根據(jù)角平分線的性質,可證得BD∥OA,根據(jù)∠BDM=90°,進而得到∠OAM=90°,即可得證;(2)連接AC,利用△AOC是等邊三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的長,則S陰影=S梯形OADC﹣S扇形OAC即可得解.【詳解】(1)證明:∵∠B=60°,OB=OC,∴△BOC是等邊三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA為⊙O的半徑,∴AM是⊙O的切線(2)解:連接AC,∵∠3=60°,OA=OC,∴△AOC是等邊三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S陰影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣.【點睛】本題主要考查切線的性質與判定、扇形的面積等,解題關鍵在于用整體減去部分的方法計算.25、證明見解析.【解析】試題分析:根據(jù)等腰三角形的性質可證∠DBM=∠ECM,可證△BDM≌△CEM,可得MD=ME,即可解題.試題解析:證明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中點,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考點:1.等腰三角形的性質;2.全等三角形的判定與性質.26、(1)1.90;(2)112.65元;(3)當小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.【解析】試
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡公司實習自我鑒定
- 語文教師學期教學工作總結
- 后勤實習自我鑒定(5篇)
- 初二動物園游記作文600字7篇
- 初中教師述職報告合集15篇
- 公司客服工作總結15篇
- 城中村改造項目申請報告
- 城鎮(zhèn)老舊小區(qū)改造項目立項報告
- 城市公共空間功能提升項目申請報告
- 員工軍訓的總結有感10篇
- 醫(yī)院感染管理培訓課件:內鏡操作中的感染控制要點
- 美容皮膚科培訓課件
- 《傳染病及預防》教學設計
- 高中研究性課題報告環(huán)境保護
- 天津市西青區(qū)2023-2024學年八年級上學期期末數(shù)學達標卷(含答案)
- 社會心理學理論考試試題及答案
- 國開2023秋《電子商務概論》實踐任務B2B電子商務網(wǎng)站調研報告參考答案
- 國家開放大學《個人理財》形考任務1-4
- 【瑞幸咖啡財務分析報告(附財務報表)5300字(論文)】
- 過敏性鼻炎-疾病研究白皮書
- 幼兒園學前教育五以內的數(shù)字比大小練習題
評論
0/150
提交評論