2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型4 與旋轉(zhuǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第1頁(yè)
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型4 與旋轉(zhuǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第2頁(yè)
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型4 與旋轉(zhuǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第3頁(yè)
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型4 與旋轉(zhuǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第4頁(yè)
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型4 與旋轉(zhuǎn)有關(guān)的探究題(專題訓(xùn)練)(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩56頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE類型四與旋轉(zhuǎn)有關(guān)的探究題(專題訓(xùn)練)1.(2023·北京·統(tǒng)考中考真題)在SKIPIF1<0中、SKIPIF1<0,SKIPIF1<0于點(diǎn)M,D是線段SKIPIF1<0上的動(dòng)點(diǎn)(不與點(diǎn)M,C重合),將線段SKIPIF1<0繞點(diǎn)D順時(shí)針旋轉(zhuǎn)SKIPIF1<0得到線段SKIPIF1<0.

(1)如圖1,當(dāng)點(diǎn)E在線段SKIPIF1<0上時(shí),求證:D是SKIPIF1<0的中點(diǎn);(2)如圖2,若在線段SKIPIF1<0上存在點(diǎn)F(不與點(diǎn)B,M重合)滿足SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,直接寫(xiě)出SKIPIF1<0的大小,并證明.【答案】(1)見(jiàn)解析(2)SKIPIF1<0,證明見(jiàn)解析【分析】(1)由旋轉(zhuǎn)的性質(zhì)得SKIPIF1<0,SKIPIF1<0,利用三角形外角的性質(zhì)求出SKIPIF1<0,可得SKIPIF1<0,等量代換得到SKIPIF1<0即可;(2)延長(zhǎng)SKIPIF1<0到H使SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0是SKIPIF1<0的中位線,然后求出SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0,證明SKIPIF1<0,得到SKIPIF1<0,再根據(jù)等腰三角形三線合一證明SKIPIF1<0即可.【詳解】(1)證明:由旋轉(zhuǎn)的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即D是SKIPIF1<0的中點(diǎn);(2)SKIPIF1<0;證明:如圖2,延長(zhǎng)SKIPIF1<0到H使SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0的中位線,∴SKIPIF1<0,SKIPIF1<0,由旋轉(zhuǎn)的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0是等腰三角形,∴SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.

【點(diǎn)睛】本題考查了等腰三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),三角形外角的性質(zhì),三角形中位線定理以及全等三角形的判定和性質(zhì)等知識(shí),作出合適的輔助線,構(gòu)造出全等三角形是解題的關(guān)鍵.2.(2022·重慶市B卷)在△ABC中,∠BAC=90°,AB=AC=22,D為BC的中點(diǎn),E,F(xiàn)分別為AC,AD上任意一點(diǎn),連接EF,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接FG,AG.

(1)如圖1,點(diǎn)E與點(diǎn)C重合,且GF的延長(zhǎng)線過(guò)點(diǎn)B,若點(diǎn)P為FG的中點(diǎn),連接PD,求PD的長(zhǎng);

(2)如圖2,EF的延長(zhǎng)線交AB于點(diǎn)M,點(diǎn)N在AC上,∠AGN=∠AEG且GN=MF,求證:AM+AF=2AE;

(3)如圖3,F(xiàn)為線段AD上一動(dòng)點(diǎn),E為AC的中點(diǎn),連接BE,H為直線BC上一動(dòng)點(diǎn),連接EH,將△BEH沿EH翻折至△ABC所在平面內(nèi),得到△B'EH,連接B'G,直接寫(xiě)出線段【答案】(1)解:如圖1,連接CP,

由旋轉(zhuǎn)知,CF=CG,∠FCG=90°,

∴△FCG為等腰直角三角形,

∵點(diǎn)P是FG的中點(diǎn),

∴CP⊥FG,

∵點(diǎn)D是BC的中點(diǎn),

∴DP=12BC,

在Rt△ABC中,AB=AC=22,

∴BC=2AB=4,

∴DP=2;

(2)證明:如圖2,

過(guò)點(diǎn)E作EH⊥AE交AD的延長(zhǎng)線于H,

∴∠AEH=90°,

由旋轉(zhuǎn)知,EG=EF,∠FEG=90°,

∴∠FEG=∠AEH,

∴∠AEG=∠HEF,

∵AB=AC,點(diǎn)D是BC的中點(diǎn),

∴∠BAD=∠CAD=12∠BAC=45°,

∴∠H=90°?∠CAD=45°=∠CAD,

∴AE=HE,

∴△EGA≌△EFH(SAS),

∴AG=FH,∠EAG=∠H=45°,

∴∠EAG=∠BAD=45°,

∵∠AMF=180°?∠BAD?∠AFM=135°?∠AFM,

∵∠AFM=∠EFH,

∴∠AMF=135°?∠EFH,

∵∠HEF=180°?∠EFH?∠H=135°?∠EFH,

∴∠AMF=∠HEF,

∵△EGA≌△EFH,

∴∠AEG=∠HEF,

∵∠AGN=∠AEG,

∴∠AGN=∠HEF,

∴∠AGN=∠AMF,

∵GN=MF,

∴△AGN≌△AMF(AAS),

∴AG=AM,

∵AG=FH,

∴AM=FH,

∴AF+AM=AF+FH=AH=2AE;

(3)解:∵點(diǎn)E是AC的中點(diǎn),

∴AE=12AC=2,

根據(jù)勾股定理得,BE=AE2+AB2=10,

由折疊直,BE=B'E=10,

∴點(diǎn)B'是以點(diǎn)E為圓心,10為半徑的圓上,

由旋轉(zhuǎn)知,EF=EG,

∴點(diǎn)G是以點(diǎn)E為圓心,EG為半徑的圓上,

∴B'G的最小值為B'E?EG,

要B'G最小,則EG最大,即EF最大,

∵3.(2023·四川自貢·統(tǒng)考中考真題)如圖1,一大一小兩個(gè)等腰直角三角形疊放在一起,SKIPIF1<0,SKIPIF1<0分別是斜邊SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0.

(1)將SKIPIF1<0繞頂點(diǎn)SKIPIF1<0旋轉(zhuǎn)一周,請(qǐng)直接寫(xiě)出點(diǎn)SKIPIF1<0,SKIPIF1<0距離的最大值和最小值;(2)將SKIPIF1<0繞頂點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0(如圖SKIPIF1<0),求SKIPIF1<0的長(zhǎng).【答案】(1)最大值為SKIPIF1<0,最小值為SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)直角三角形斜邊上的中線,得出SKIPIF1<0的值,進(jìn)而根據(jù)題意求得最大值與最小值即可求解;(2)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長(zhǎng)線于點(diǎn)SKIPIF1<0,根據(jù)旋轉(zhuǎn)的性質(zhì)求得SKIPIF1<0,進(jìn)而得出SKIPIF1<0,進(jìn)而可得SKIPIF1<0,勾股定理解SKIPIF1<0,即可求解.【詳解】(1)解:依題意,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0的延長(zhǎng)線上時(shí),SKIPIF1<0的距離最大,最大值為SKIPIF1<0,當(dāng)SKIPIF1<0在線段SKIPIF1<0上時(shí),SKIPIF1<0的距離最小,最小值為SKIPIF1<0;

(2)解:如圖所示,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長(zhǎng)線于點(diǎn)SKIPIF1<0,

∵SKIPIF1<0繞頂點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,旋轉(zhuǎn)的性質(zhì),含30度角的直角三角形的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì),勾股定理是解題的關(guān)鍵.4.(湖南省郴州市2021年中考數(shù)學(xué)試卷)如圖1,在等腰直角三角形SKIPIF1<0中,SKIPIF1<0.點(diǎn)SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0為線段SKIPIF1<0上一動(dòng)點(diǎn)(不與點(diǎn)SKIPIF1<0,SKIPIF1<0重合),將線段SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0得到SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.

(1)證明:SKIPIF1<0;(2)如圖2,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0.①證明:在點(diǎn)SKIPIF1<0的運(yùn)動(dòng)過(guò)程中,總有SKIPIF1<0;②若SKIPIF1<0,當(dāng)SKIPIF1<0的長(zhǎng)度為多少時(shí),SKIPIF1<0為等腰三角形?【答案】(1)見(jiàn)詳解;(2)①見(jiàn)詳解;②當(dāng)SKIPIF1<0的長(zhǎng)度為2或SKIPIF1<0時(shí),SKIPIF1<0為等腰三角形【分析】(1)由旋轉(zhuǎn)的性質(zhì)得AH=AG,∠HAG=90°,從而得∠BAH=∠CAG,進(jìn)而即可得到結(jié)論;(2)①由SKIPIF1<0,得AH=AG,再證明SKIPIF1<0,進(jìn)而即可得到結(jié)論;②SKIPIF1<0為等腰三角形,分3種情況:(a)當(dāng)∠QAG=∠QGA=45°時(shí),(b)當(dāng)∠GAQ=∠GQA=67.5°時(shí),(c)當(dāng)∠AQG=∠AGQ=45°時(shí),分別畫(huà)出圖形求解,即可.【詳解】解:(1)∵線段SKIPIF1<0繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0得到SKIPIF1<0,∴AH=AG,∠HAG=90°,∵在等腰直角三角形SKIPIF1<0中,SKIPIF1<0,AB=AC,∴∠BAH=90°-∠CAH=∠CAG,∴SKIPIF1<0;(2)①∵在等腰直角三角形SKIPIF1<0中,AB=AC,點(diǎn)SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),∴AE=AF,SKIPIF1<0是等腰直角三角形,∵AH=AG,∠BAH=∠CAG,∴SKIPIF1<0,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:SKIPIF1<0;②∵SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),∴AE=AF=2,∵∠AGH=45°,SKIPIF1<0為等腰三角形,分3種情況:(a)當(dāng)∠QAG=∠QGA=45°時(shí),如圖,則∠HAF=90°-45°=45°,∴AH平分∠EAF,∴點(diǎn)H是EF的中點(diǎn),∴EH=SKIPIF1<0;(b)當(dāng)∠GAQ=∠GQA=(180°-45°)÷2=67.5°時(shí),如圖,則∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)當(dāng)∠AQG=∠AGQ=45°時(shí),點(diǎn)H與點(diǎn)F重合,不符合題意,舍去,綜上所述:當(dāng)SKIPIF1<0的長(zhǎng)度為2或SKIPIF1<0時(shí),SKIPIF1<0為等腰三角形.【點(diǎn)睛】本題主要考查等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,熟練掌握全等三角形的判定定理,根據(jù)題意畫(huà)出圖形,進(jìn)行分類討論,是解題的關(guān)鍵.5.(2023·遼寧·統(tǒng)考中考真題)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在直線SKIPIF1<0上(不與點(diǎn)SKIPIF1<0重合),連接SKIPIF1<0,線段SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0,得到線段SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作直線SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為點(diǎn)SKIPIF1<0,直線SKIPIF1<0交直線SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)如圖,當(dāng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合時(shí),請(qǐng)直接寫(xiě)出線段SKIPIF1<0與線段SKIPIF1<0的數(shù)量關(guān)系;(2)如圖,當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),求證:SKIPIF1<0;(3)連接SKIPIF1<0,SKIPIF1<0的面積記為SKIPIF1<0,SKIPIF1<0的面積記為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),請(qǐng)直接寫(xiě)出SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)見(jiàn)解析(3)SKIPIF1<0或SKIPIF1<0【分析】(1)可先證SKIPIF1<0,得到SKIPIF1<0,根據(jù)銳角三角函數(shù),可得到SKIPIF1<0和SKIPIF1<0的數(shù)量關(guān)系,進(jìn)而得到線段SKIPIF1<0與線段SKIPIF1<0的數(shù)量關(guān)系.(2)可先證SKIPIF1<0,得到SKIPIF1<0,進(jìn)而得到SKIPIF1<0,問(wèn)題即可得證.(3)分兩種情況:①點(diǎn)D在線段SKIPIF1<0上,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,利用勾股定理,可用含SKIPIF1<0的代數(shù)式表示SKIPIF1<0,根據(jù)三角形面積公式,即可得到答案.②點(diǎn)D在線段SKIPIF1<0的延長(zhǎng)線上,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于SKIPIF1<0,交SKIPIF1<0延長(zhǎng)線于點(diǎn)SKIPIF1<0,令SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,設(shè)SKIPIF1<0,可證SKIPIF1<0,進(jìn)一步證得SKIPIF1<0是等腰直角三角形,SKIPIF1<0,利用勾股定理,可用含SKIPIF1<0的代數(shù)式表示SKIPIF1<0,根據(jù)三角形面積公式,即可得到答案【詳解】(1)解:SKIPIF1<0.理由如下:如圖,連接SKIPIF1<0.根據(jù)圖形旋轉(zhuǎn)的性質(zhì)可知SKIPIF1<0.由題意可知,SKIPIF1<0為等腰直角三角形,SKIPIF1<0為等腰直角三角形SKIPIF1<0斜邊SKIPIF1<0上的中線,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.(2)解:SKIPIF1<0為等腰直角三角形SKIPIF1<0斜邊SKIPIF1<0上的中線,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.(3)解:當(dāng)點(diǎn)D在線段SKIPIF1<0延長(zhǎng)線上時(shí),不滿足條件SKIPIF1<0,故分兩種情況:①點(diǎn)D在線段SKIPIF1<0上,如圖,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0;過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.根據(jù)題意可知,四邊形SKIPIF1<0和SKIPIF1<0為矩形,SKIPIF1<0為等腰直角三角形.SKIPIF1<0,SKIPIF1<0.由(2)證明可知SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.根據(jù)勾股定理可知SKIPIF1<0,SKIPIF1<0的面積SKIPIF1<0與SKIPIF1<0的面積SKIPIF1<0之比SKIPIF1<0②點(diǎn)D在線段SKIPIF1<0的延長(zhǎng)線上,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于SKIPIF1<0,交SKIPIF1<0延長(zhǎng)線于點(diǎn)SKIPIF1<0,令SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由題意知,四邊形SKIPIF1<0,SKIPIF1<0是矩形,∵SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0又∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0而SKIPIF1<0∴SKIPIF1<0SKIPIF1<0∴SKIPIF1<0是等腰直角三角形,SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0SKIPIF1<0中,SKIPIF1<0SKIPIF1<0的面積SKIPIF1<0與SKIPIF1<0的面積SKIPIF1<0之比SKIPIF1<0【點(diǎn)睛】本題主要考查全等三角形的判定及性質(zhì)、勾股定理以及圖形旋轉(zhuǎn)的性質(zhì),靈活利用全等三角形的判定及性質(zhì)是解題的關(guān)鍵.6.(2021·四川中考真題)在等腰SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0邊上一點(diǎn)(不與點(diǎn)SKIPIF1<0、SKIPIF1<0重合),連結(jié)SKIPIF1<0.(1)如圖1,若SKIPIF1<0,點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)為點(diǎn)SKIPIF1<0,結(jié)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0________;(2)若SKIPIF1<0,將線段SKIPIF1<0繞點(diǎn)SKIPIF1<0順時(shí)針旋轉(zhuǎn)SKIPIF1<0得到線段SKIPIF1<0,連結(jié)SKIPIF1<0.①在圖2中補(bǔ)全圖形;②探究SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系,并證明;(3)如圖3,若SKIPIF1<0,且SKIPIF1<0,試探究SKIPIF1<0、SKIPIF1<0、SKIPIF1<0之間滿足的數(shù)量關(guān)系,并證明.【答案】(1)30°;(2)①見(jiàn)解析;②SKIPIF1<0;見(jiàn)解析;(3)SKIPIF1<0,見(jiàn)解析【分析】(1)先根據(jù)題意得出△ABC是等邊三角形,再利用三角形的外角計(jì)算即可(2)①按要求補(bǔ)全圖即可②先根據(jù)已知條件證明△ABC是等邊三角形,再證明SKIPIF1<0,即可得出SKIPIF1<0(3)先證明SKIPIF1<0,再證明SKIPIF1<0,得出SKIPIF1<0,從而證明SKIPIF1<0,得出SKIPIF1<0,從而證明SKIPIF1<0【詳解】解:(1)∵SKIPIF1<0,SKIPIF1<0∴△ABC是等邊三角形∴∠B=60°∵點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)為點(diǎn)SKIPIF1<0∴AB⊥DE,∴SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0;(2)①補(bǔ)全圖如圖2所示;②SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系為:SKIPIF1<0;證明:∵SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0為正三角形,又∵SKIPIF1<0繞點(diǎn)SKIPIF1<0順時(shí)針旋轉(zhuǎn)SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)連接SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查相似三角形的證明及性質(zhì)、全等三角形的證明及性質(zhì)、三角形的外角、軸對(duì)稱,熟練進(jìn)行角的轉(zhuǎn)換是解題的關(guān)鍵,相似三角形的證明是重點(diǎn)7.(2023·四川樂(lè)山·統(tǒng)考中考真題)在學(xué)習(xí)完《圖形的旋轉(zhuǎn)》后,劉老師帶領(lǐng)學(xué)生開(kāi)展了一次數(shù)學(xué)探究活動(dòng)【問(wèn)題情境】劉老師先引導(dǎo)學(xué)生回顧了華東師大版教材七年級(jí)下冊(cè)第SKIPIF1<0頁(yè)“探索”部分內(nèi)容:如圖,將一個(gè)三角形紙板SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0到達(dá)SKIPIF1<0的位置,那么可以得到:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(

劉老師進(jìn)一步談到:圖形的旋轉(zhuǎn)蘊(yùn)含于自然界的運(yùn)動(dòng)變化規(guī)律中,即“變”中蘊(yùn)含著“不變”,這是我們解決圖形旋轉(zhuǎn)的關(guān)鍵;故數(shù)學(xué)就是一門(mén)哲學(xué).【問(wèn)題解決】(1)上述問(wèn)題情境中“(

)”處應(yīng)填理由:____________________;(2)如圖,小王將一個(gè)半徑為SKIPIF1<0,圓心角為SKIPIF1<0的扇形紙板SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0到達(dá)扇形紙板SKIPIF1<0的位置.

①請(qǐng)?jiān)趫D中作出點(diǎn)SKIPIF1<0;②如果SKIPIF1<0,則在旋轉(zhuǎn)過(guò)程中,點(diǎn)SKIPIF1<0經(jīng)過(guò)的路徑長(zhǎng)為_(kāi)_________;【問(wèn)題拓展】小李突發(fā)奇想,將與(2)中完全相同的兩個(gè)扇形紙板重疊,一個(gè)固定在墻上,使得一邊位于水平位置,另一個(gè)在弧的中點(diǎn)處固定,然后放開(kāi)紙板,使其擺動(dòng)到豎直位置時(shí)靜止,此時(shí),兩個(gè)紙板重疊部分的面積是多少呢?如圖所示,請(qǐng)你幫助小李解決這個(gè)問(wèn)題.

【答案】問(wèn)題解決(1)旋轉(zhuǎn)前后的圖形對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等(2)①見(jiàn)解析;②SKIPIF1<0問(wèn)題拓展:SKIPIF1<0【分析】問(wèn)題解決(1)根據(jù)旋轉(zhuǎn)性質(zhì)得出旋轉(zhuǎn)前后的圖形對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等;(2)①分別作SKIPIF1<0和SKIPIF1<0的垂直平分線,兩垂直平分線的交點(diǎn)即為所求點(diǎn)O;②根據(jù)弧長(zhǎng)公式求解即可;問(wèn)題拓展,連接SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由旋轉(zhuǎn)得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中求出SKIPIF1<0和SKIPIF1<0的長(zhǎng),可以求出SKIPIF1<0,再證明SKIPIF1<0,即可求出最后結(jié)果.【詳解】解:【問(wèn)題解決】(1)旋轉(zhuǎn)前后的圖形對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等

(2)①下圖中,點(diǎn)O為所求

②連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0扇形紙板SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0到達(dá)扇形紙板SKIPIF1<0的位置,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在旋轉(zhuǎn)過(guò)程中,點(diǎn)SKIPIF1<0經(jīng)過(guò)的路徑長(zhǎng)為以點(diǎn)SKIPIF1<0為圓心,圓心角為SKIPIF1<0,SKIPIF1<0為半徑的所對(duì)應(yīng)的弧長(zhǎng),SKIPIF1<0點(diǎn)SKIPIF1<0經(jīng)過(guò)的路徑長(zhǎng)SKIPIF1<0;

【問(wèn)題拓展】解:連接SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0如圖所示

SKIPIF1<0.由旋轉(zhuǎn)得SKIPIF1<0,SKIPIF1<0.

在SKIPIF1<0中,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.

SKIPIF1<0.SKIPIF1<0.SKIPIF1<0,

在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),弧長(zhǎng)公式,解直角三角形,三角形全等的性質(zhì)與判定,解題的關(guān)鍵是抓住圖形旋轉(zhuǎn)前后的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,正確作出輔助線構(gòu)造出直角三角形.8.(2021·浙江嘉興市·中考真題)小王在學(xué)習(xí)浙教版九上課本第72頁(yè)例2后,進(jìn)一步開(kāi)展探究活動(dòng):將一個(gè)矩形SKIPIF1<0繞點(diǎn)SKIPIF1<0順時(shí)針旋轉(zhuǎn)SKIPIF1<0,得到矩形SKIPIF1<0[探究1]如圖1,當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0恰好在SKIPIF1<0延長(zhǎng)線上.若SKIPIF1<0,求BC的長(zhǎng).

[探究2]如圖2,連結(jié)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0.線段SKIPIF1<0與SKIPIF1<0相等嗎?請(qǐng)說(shuō)明理由.

[探究3]在探究2的條件下,射線SKIPIF1<0分別交SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0(如圖3),SKIPIF1<0,SKIPIF1<0存在一定的數(shù)量關(guān)系,并加以證明.

【答案】[探究1]SKIPIF1<0;[探究2]SKIPIF1<0,證明見(jiàn)解析;[探究3]SKIPIF1<0,證明見(jiàn)解析【分析】[探究1]設(shè)SKIPIF1<0,根據(jù)旋轉(zhuǎn)和矩形的性質(zhì)得出SKIPIF1<0,從而得出SKIPIF1<0,得出比例式SKIPIF1<0,列出方程解方程即可;[探究2]先利用SAS得出SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,再結(jié)合已知條件得出SKIPIF1<0,即可得出SKIPIF1<0;[探究3]連結(jié)SKIPIF1<0,先利用SSS得出SKIPIF1<0,從而證得SKIPIF1<0,再利用兩角對(duì)應(yīng)相等得出SKIPIF1<0,得出SKIPIF1<0即可得出結(jié)論.【詳解】[探究1]如圖1,設(shè)SKIPIF1<0.∵矩形SKIPIF1<0繞點(diǎn)SKIPIF1<0順時(shí)針旋轉(zhuǎn)SKIPIF1<0得到矩形SKIPIF1<0,∴點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在同一直線上.∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.又∵點(diǎn)SKIPIF1<0在SKIPIF1<0延長(zhǎng)線上,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.解得SKIPIF1<0,SKIPIF1<0(不合題意,舍去)∴SKIPIF1<0.[探究2]SKIPIF1<0.證明:如圖2,連結(jié)SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.[探究3]關(guān)系式為SKIPIF1<0.證明:如圖3,連結(jié)SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.【點(diǎn)睛】本題考查了矩形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解一元二次方程等,解題的關(guān)鍵是靈活運(yùn)用這些知識(shí)解決問(wèn)題.9.(2023·浙江紹興·統(tǒng)考中考真題)在平行四邊形SKIPIF1<0中(頂點(diǎn)SKIPIF1<0按逆時(shí)針?lè)较蚺帕校?,SKIPIF1<0為銳角,且SKIPIF1<0.

(1)如圖1,求SKIPIF1<0邊上的高SKIPIF1<0的長(zhǎng).(2)SKIPIF1<0是邊SKIPIF1<0上的一動(dòng)點(diǎn),點(diǎn)SKIPIF1<0同時(shí)繞點(diǎn)SKIPIF1<0按逆時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0得點(diǎn)SKIPIF1<0.①如圖2,當(dāng)點(diǎn)SKIPIF1<0落在射線SKIPIF1<0上時(shí),求SKIPIF1<0的長(zhǎng).②當(dāng)SKIPIF1<0是直角三角形時(shí),求SKIPIF1<0的長(zhǎng).【答案】(1)8(2)①SKIPIF1<0;②SKIPIF1<0或SKIPIF1<0【分析】(1)利用正弦的定義即可求得答案;(2)①先證明SKIPIF1<0,再證明SKIPIF1<0,最后利用相似三角形對(duì)應(yīng)邊成比例列出方程即可;②分三種情況討論完成,第一種:SKIPIF1<0為直角頂點(diǎn);第二種:SKIPIF1<0為直角頂點(diǎn);第三種,SKIPIF1<0為直角頂點(diǎn),但此種情況不成立,故最終有兩個(gè)答案.【詳解】(1)在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0.(2)①如圖1,作SKIPIF1<0于點(diǎn)SKIPIF1<0,由(1)得,SKIPIF1<0,則SKIPIF1<0,作SKIPIF1<0交SKIPIF1<0延長(zhǎng)線于點(diǎn)SKIPIF1<0,則SKIPIF1<0,

∴SKIPIF1<0.∵SKIPIF1<0∴SKIPIF1<0.由旋轉(zhuǎn)知SKIPIF1<0,∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.②由旋轉(zhuǎn)得SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0.情況一:當(dāng)以SKIPIF1<0為直角頂點(diǎn)時(shí),如圖2.

∵SKIPIF1<0,∴SKIPIF1<0落在線段SKIPIF1<0延長(zhǎng)線上.∵SKIPIF1<0,∴SKIPIF1<0,由(1)知,SKIPIF1<0,∴SKIPIF1<0.情況二:當(dāng)以SKIPIF1<0為直角頂點(diǎn)時(shí),如圖3.

設(shè)SKIPIF1<0與射線SKIPIF1<0的交點(diǎn)為SKIPIF1<0,作SKIPIF1<0于點(diǎn)SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0.情況三:當(dāng)以SKIPIF1<0為直角頂點(diǎn)時(shí),點(diǎn)SKIPIF1<0落在SKIPIF1<0的延長(zhǎng)線上,不符合題意.綜上所述,SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),正弦的定義,全等的判定及性質(zhì),相似的判定及性質(zhì),理解記憶相關(guān)定義,判定,性質(zhì)是解題的關(guān)鍵.10.(2021·浙江中考真題)如圖,在菱形SKIPIF1<0中,SKIPIF1<0是銳角,E是SKIPIF1<0邊上的動(dòng)點(diǎn),將射線SKIPIF1<0繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),交直線SKIPIF1<0于點(diǎn)F.(1)當(dāng)SKIPIF1<0時(shí),①求證:SKIPIF1<0;②連結(jié)SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的值;(2)當(dāng)SKIPIF1<0時(shí),延長(zhǎng)SKIPIF1<0交射線SKIPIF1<0于點(diǎn)M,延長(zhǎng)SKIPIF1<0交射線SKIPIF1<0于點(diǎn)N,連結(jié)SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0為何值時(shí),SKIPIF1<0是等腰三角形.【答案】(1)①見(jiàn)解析;②SKIPIF1<0;(2)當(dāng)SKIPIF1<0或2或SKIPIF1<0時(shí),SKIPIF1<0是等腰三角形.【分析】(1)根據(jù)菱形的性質(zhì)得到邊相等,對(duì)角相等,根據(jù)已知條件證明出SKIPIF1<0,得到SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得到AC是EF的垂直平分線,得到SKIPIF1<0,SKIPIF1<0,再根據(jù)已知條件證明出SKIPIF1<0,算出面積之比;(2)等腰三角形的存在性問(wèn)題,分為三種情況:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得到CE=SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得到CE=2;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得到CE=SKIPIF1<0.【詳解】(1)①證明:在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0(ASA),∴SKIPIF1<0.②解:如圖1,連結(jié)SKIPIF1<0.由①知,SKIPIF1<0,SKIPIF1<0.在菱形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.

(2)解:在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理,SKIPIF1<0,∴SKIPIF1<0.SKIPIF1<0是等腰三角形有三種情況:①如圖2,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.②如圖3,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.③如圖4,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.綜上所述,當(dāng)SKIPIF1<0或2或SKIPIF1<0時(shí),SKIPIF1<0是等腰三角形.【點(diǎn)睛】本題主要考查了菱形的基本性質(zhì)、相似三角形的判定與性質(zhì)、菱形中等腰三角形的存在性問(wèn)題,解決本題的關(guān)鍵在于畫(huà)出三種情況的等腰三角形(利用兩圓一中垂),通過(guò)證明三角形相似,利用相似比求出所需線段的長(zhǎng).11.(2023·四川南充·統(tǒng)考中考真題)如圖,正方形SKIPIF1<0中,點(diǎn)SKIPIF1<0在邊SKIPIF1<0上,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,SKIPIF1<0.

(1)求證:SKIPIF1<0;(2)將SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn),使點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0落在SKIPIF1<0上,連接SKIPIF1<0.當(dāng)點(diǎn)SKIPIF1<0在邊SKIPIF1<0上運(yùn)動(dòng)時(shí)(點(diǎn)SKIPIF1<0不與SKIPIF1<0,SKIPIF1<0重合),判斷SKIPIF1<0的形狀,并說(shuō)明理由.(3)在(2)的條件下,已知SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的長(zhǎng).【答案】(1)見(jiàn)解析(2)等腰直角三角形,理由見(jiàn)解析(3)SKIPIF1<0【分析】(1)根據(jù)正方形的基本性質(zhì)以及“斜中半定理”等推出SKIPIF1<0,即可證得結(jié)論;(2)由旋轉(zhuǎn)的性質(zhì)得SKIPIF1<0,從而利用等腰三角形的性質(zhì)推出SKIPIF1<0,再結(jié)合正方形對(duì)角線的性質(zhì)推出SKIPIF1<0,即可證得結(jié)論;(3)結(jié)合已知信息推出SKIPIF1<0,從而利用相似三角形的性質(zhì)以及勾股定理進(jìn)行計(jì)算求解即可.【詳解】(1)證:∵四邊形SKIPIF1<0為正方形,∴SKIPIF1<0,SKIPIF1<0,∵點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0,在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0;(2)解:SKIPIF1<0為等腰直角三角形,理由如下:由旋轉(zhuǎn)的性質(zhì)得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為等腰直角三角形;(3)解:如圖所示,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0(不合題意,舍去),∴SKIPIF1<0.

【點(diǎn)睛】本題考查正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形和相似三角形的判定與性質(zhì)等,理解并熟練運(yùn)用基本圖形的證明方法和性質(zhì),掌握勾股定理等相關(guān)計(jì)算方式是解題關(guān)鍵.12.在等腰△ABC中,AC=BC,SKIPIF1<0是直角三角形,∠DAE=90°,∠ADE=SKIPIF1<0∠ACB,連接BD,BE,點(diǎn)F是BD的中點(diǎn),連接CF.(1)當(dāng)∠CAB=45°時(shí).①如圖1,當(dāng)頂點(diǎn)D在邊AC上時(shí),請(qǐng)直接寫(xiě)出∠EAB與∠CBA的數(shù)量關(guān)系是.線段BE與線段CF的數(shù)量關(guān)系是;②如圖2,當(dāng)頂點(diǎn)D在邊AB上時(shí),(1)中線段BE與線段CF的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論