c北京郵電大學計算機學院-離散數(shù)學-數(shù)學結構-群論-hap9-1_第1頁
c北京郵電大學計算機學院-離散數(shù)學-數(shù)學結構-群論-hap9-1_第2頁
c北京郵電大學計算機學院-離散數(shù)學-數(shù)學結構-群論-hap9-1_第3頁
c北京郵電大學計算機學院-離散數(shù)學-數(shù)學結構-群論-hap9-1_第4頁
c北京郵電大學計算機學院-離散數(shù)學-數(shù)學結構-群論-hap9-1_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

MathematicalStructures〔數(shù)學結構〕22024/5/21CollegeofComputerScience&Technology,BUPTMathematicalstructureAcollectionofobjectswithoperationsdefinedonthemandtheaccompanyingpropertiesformamathematicalstructureorsystem.Inthisbookwedealonlywithdiscretemathematicalstructures.32024/5/21CollegeofComputerScience&Technology,BUPTExample1Thecollectionofsetswiththeoperationsofunion,intersection,andcomplementandtheiraccompanyingpropertiesisa(discrete)mathematicalstructure.Wedenotethisstructureby[sets,

,

,].42024/5/21CollegeofComputerScience&Technology,BUPTExample2Thecollectionof33matriceswiththeoperationsofaddition,multiplication,andtranspose〔轉置〕isamathematicalstructuredenotedby[33matrices,+,,T].52024/5/21CollegeofComputerScience&Technology,BUPTClosure〔封閉性〕Astructureisclosedwithrespecttoanoperationifthatoperationalwaysproducesanothermemberofthecollectionofobjects.62024/5/21CollegeofComputerScience&Technology,BUPTExamplesThestructure[5

5matrices,+,*,T]isclosedwithrespecttoadditionbecausethesumoftwo5

5matricesisanother5

5matrix.Thestructure[oddintegers,+,*]isnotclosedwithrespecttoaddition.Thesumoftwooddintegersisaneveninteger.Thisstructuredoeshavetheclosurepropertyformultiplication,sincetheproductoftwooddnumbersisanoddnumber.72024/5/21CollegeofComputerScience&Technology,BUPTBinaryoperation〔二元運算〕Anoperationthatcombinestwoobjectsisabinaryoperation.Anoperationthatrequiresonlyoneobjectisaunaryoperation〔一元運算〕.Binaryoperationsoftenhavesimilarproperties,aswehaveseenearlier.Example(a)Setintersectionisabinaryoperationsinceitcombinestwosetstoproduceanewset.Producingthetransposeofmatrixisaunaryoperation.82024/5/21CollegeofComputerScience&Technology,BUPTCommutative〔交換性〕Commonpropertieshavebeengivennames.Forexample,iftheorderoftheobjectsdoesnotaffecttheoutcomeofabinaryoperation,wesaythattheoperationiscommutative.Thatis,ifx

y=y

x,whereissomebinaryoperation,iscommutative.Example(a)JoinandmeetforBooleanmatricesarecommutativeoperations.A

B=B

AandA

B=B

A.(b)OrdinarymatrixmultiplicationisnotacommutativeoperationAB

BA.92024/5/21CollegeofComputerScience&Technology,BUPTNoteanoperationhasapropertymeansthestatementofthepropertyistruewhentheoperationisusedwithanyobjectsinthestructure.Ifthereisevenonecasewhenthestatementisnottrue,theoperationdoesnothavethatproperty.102024/5/21CollegeofComputerScience&Technology,BUPTAssociative〔結合性〕Ifnisabinaryoperation,thennisassociativeorhastheassociativepropertyif(x

y)

z=x

(y

z).ExampleSetunionisanassociativeoperation,since(A

B)

C=A

(B

C)isalwaystrue.112024/5/21CollegeofComputerScience&Technology,BUPTDistributive〔分配〕propertyIfamathematicalstructurehastwobinaryoperations,say

and

,adistributivepropertyhasthefollowingpattern:

x

(y

z)=(x

y)

(x

z).Example(a)Wearefamiliarwiththedistributivepropertyforrealnumbers;ifa,b,andcarerealnumbers,thena

(b+c)=a

b+a

c.(b)Thestructure[sets,

,

,]hastwodistributiveproperties:A

(B

C)=(A

B)

(A

C)andA

(B

C)=(A

B)

(A

C).122024/5/21CollegeofComputerScience&Technology,BUPTDeMorgan‘slaws〔德.摩根律〕Severalofthestructureswehaveseenhaveaunaryoperationandtwobinaryoperations.Iftheunaryoperationis*andthebinaryoperationsare

and

.thenDeMorgan'slawsare(x

y)*=x*

y*and(x

y)*=x*

y*.Example9(a)(A

B)=A

Band(A

B)=A

B.(b)Thestructure[realnumbers,+,*,]doesnotsatisfyDeMorgan'slaws.since

132024/5/21CollegeofComputerScience&Technology,BUPTIdentity(單位元〕foranoperationAstructurewithabinaryoperation

maycontainadistinguishedobjecte,withthepropertyx

e=e

x=xforallxinthecollection.Wecalleanidentityfor

.Infact,anidentityforanoperationmustbeunique.142024/5/21CollegeofComputerScience&Technology,BUPTTheorem1Ifeisanidentityforabinaryoperation

,theneisunique.ProofAssumeanotherobjectialsohastheidentityproperty,sox

i=i

x=x.Thene

i=e,butsinceeisanidentityforn,i

e=e

i=i.Thus,i=e.Thereisatmostoneobjectwiththeidentitypropertyfor

.152024/5/21CollegeofComputerScience&Technology,BUPTExample10For[n

nmatrices,+,*,T],Inistheidentityformatrixmultiplicationandthen

nzeromatrixistheidentityformatrixaddition.162024/5/21CollegeofComputerScience&Technology,BUPTInverse〔逆元〕

Ifabinaryoperation

hasanidentitye,wesayyisa

-inverseofxifx

y=y

x=e.Theorem2If

isanassociativeoperationandxhasa

-inversey,thenyisunique.ProofAssumethereisanother

-inverseforx,sayz.Then

(z

x)

y=e

y=yandz

(x

y)=z

e=z.Since

isassociative,(z

x)

y=z

(x

y)andsoy=z.172024/5/21CollegeofComputerScience&Technology,BUPTExample11(a)Inthestructure[3

3matrices,+,*,T]eachmatrixA=[aij]hasa+-inverse,oradditiveinverse,-A=[-aij].(b)Inthestructure[integers,+,*],onlytheintegersland-lhavemultiplicativeinverses.182024/5/21CollegeofComputerScience&Technology,BUPTExample12Let

,and*bedefinedfortheset{0,l}bythefollowingtables.Thus1

0=l,0

1=0,and1*=0.Determineifeachofthefollowingistruefor[{0,l},

,

,*].(a)

iscommutative.(b)

isassociative.(c)DeMorgan'slawshold.(d)Twodistributivepropertiesholdforthestructure.192024/5/21CollegeofComputerScience&Technology,BUPTExample12

Solution(a)Thestatementx

y=y

xmustbetrueforallchoicesofxandy.Sinceboth0

landl

0arel,

iscommutative.(b)Theeightpossiblecasestobecheckedareleftasanexercise.(c)(0

0)*=0*=l0*

0*=1

1=l.(0

1)*=1*=00*

1*=1

0=0. (1

1)*=0*=l1*

1*=0

0=0. ThelastpairshowsthatDeMorgan'slawsdonotholdinthisstructure.202024/5/21CollegeofComputerScience&Technology,BUPT(d)Onepossibledistributivepropertyisx

(y

z)=(x

y)

(x

z).allpossiblecasesmustbechecked.Wecanshowitinatable.

212024/5/21CollegeofComputerScience&Technology,BUPTBinaryoperations

(二元運算)AbinaryoperationonasetAisaneverywheredefinedfunctionf:A

A

A.Abinaryoperationmustsatisfy:fassignsanelementf(a,b)ofAtoeachorderedpair(a,b)inA

A.OnlyoneelementofAisassignedtoeachorderedpair.222024/5/21CollegeofComputerScience&Technology,BUPTNoteIt’scustomarytodenotebinaryoperationsbyasymbolsuchas

,insteadoff,andtodenotetheelementassignedto(a,b)bya

b[insteadof(a,b)].Aisclosed(封閉的)

undertheoperation

,ifaandbareelementsinA,a

b

A.232024/5/21CollegeofComputerScience&Technology,BUPTExample1,2

LetA=Z.Definea

basa+b.

isabinaryoperationonZ.LetA=R.Definea

basa/b.

isnotabinaryoperation.Forexample,3

0isnotdefined.242024/5/21CollegeofComputerScience&Technology,BUPTExample3LetA=Z+.Definea

basa-b.

isnotabinaryoperation.itdoesnotassignanelementofAtoeveryorderedpairofelementsofA;forexample,2

5

A.252024/5/21CollegeofComputerScience&Technology,BUPTExample4LetA=Z.Definea

basanumberlessthanbothaandb.

isnotabinaryoperation,sinceitdoesnotassignauniqueelementofAtoeachorderedpairofelementsofA;forexample,8

6couldbe5,4,3,l,andsoon.inthiscase,

wouldbearelationfromA

AtoA,butnotafunction262024/5/21CollegeofComputerScience&Technology,BUPTExample5,6LetA=Z.Definea

basmax{a,b}.

isabinaryoperation;forexample,2

4=4,-3

(-5)=-3.LetA=P(S),forsomesetS.IfVandWaresubsetsofS,defineV

WasV

W.

isabinaryoperationonA.ifwedefineV

'WasV

W,then

'isanotherbinaryoperationonA.Note:It’spossibletodefinemanybinaryoperationsonthesameset.272024/5/21CollegeofComputerScience&Technology,BUPTExample7,8LetMbethesetofalln

nBooleanmatricesforafixedn.DefineA

BasA

B

isabinaryoperation.ThisisalsotrueofA

B.LetLbealattice.Definea

basa

b.

isabinaryoperationonL.Thisisalsotrueofa

b282024/5/21CollegeofComputerScience&Technology,BUPTTables–運算表IfA={al,a2,...,an}isafiniteset,wecandefineabinaryoperationonAbymeansofatable292024/5/21CollegeofComputerScience&Technology,BUPTExample9LetA={0,l}.Definebinaryoperations

and

bythefollowingtables:302024/5/21CollegeofComputerScience&Technology,BUPTHowmanyoperations?IfA={a,b},howmanybinaryoperationscanbedefinedonA.Everybinaryoperation

onAcanbedescribedbyatableThereare2

2

2

2=24or16waystocompletethetable.312024/5/21CollegeofComputerScience&Technology,BUPTPropertiesofBinaryOperations〔二元運算的性質〕Forallelementsa,b,andcinACommutative(可交換的)a*b=b*a

Associative(可結合的)a*(b*c)=(a*b)*cIdempotent(冪等的)a*a=a322024/5/21CollegeofComputerScience&Technology,BUPTCommutative–可交換的AbinaryoperationonasetAissaidtobecommutativeifa*b=b*aforallelementsaandbinA.Example:ThebinaryoperationofadditiononZ

ThebinaryoperationofsubtractiononZ.332024/5/21CollegeofComputerScience&Technology,BUPTCommutativeAbinaryoperationthatisdescribedbyatableiscommutativeifandon1yifTheentriesinthetablearesymmetricwithrespecttothemaindiagonal.342024/5/21CollegeofComputerScience&Technology,BUPTExample12Whichofthefol1owingbinaryoperationsonA={a,b,c,d}arecommutative?352024/5/21CollegeofComputerScience&Technology,BUPTAssociative–可結合的Abinaryoperation*onasetAissaidtobeassociativeifa*(b*c)=(a*b)*cforallelementsa,b,andcinA.Example:ThebinaryoperationofadditiononZ

ThebinaryoperationofsubtractiononZ

2-(3-5)

(2-3)-5.362024/5/21CollegeofComputerScience&Technology,BUPTExample15LetLbealattice.Thebinaryoperationdefinedbya*b=a

biscommutativeandassociative.Italsosatisfiestheidempotentpropertya

a=a.372024/5/21CollegeofComputerScience&Technology,BUPTExample16Let*beabinaryoperationonasetA,andsupposethat*satisfiesthefollowingpropertiesforanya,b,andcinA:

a=a*a

a*b=b*a

a*(b*c)=(a*b)*cDefinearelation

onAbya

bifandonlyifa=a*b.Showthat(A,

)isaposet,andforalla,binA,GLB(a,b)=a*b.382024/5/21CollegeofComputerScience&Technology,BUPTExample16:SolutionWemustshowthat

isreflexive,antisymm

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論