版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
MathematicalStructures〔數(shù)學結構〕22024/5/21CollegeofComputerScience&Technology,BUPTMathematicalstructureAcollectionofobjectswithoperationsdefinedonthemandtheaccompanyingpropertiesformamathematicalstructureorsystem.Inthisbookwedealonlywithdiscretemathematicalstructures.32024/5/21CollegeofComputerScience&Technology,BUPTExample1Thecollectionofsetswiththeoperationsofunion,intersection,andcomplementandtheiraccompanyingpropertiesisa(discrete)mathematicalstructure.Wedenotethisstructureby[sets,
,
,].42024/5/21CollegeofComputerScience&Technology,BUPTExample2Thecollectionof33matriceswiththeoperationsofaddition,multiplication,andtranspose〔轉置〕isamathematicalstructuredenotedby[33matrices,+,,T].52024/5/21CollegeofComputerScience&Technology,BUPTClosure〔封閉性〕Astructureisclosedwithrespecttoanoperationifthatoperationalwaysproducesanothermemberofthecollectionofobjects.62024/5/21CollegeofComputerScience&Technology,BUPTExamplesThestructure[5
5matrices,+,*,T]isclosedwithrespecttoadditionbecausethesumoftwo5
5matricesisanother5
5matrix.Thestructure[oddintegers,+,*]isnotclosedwithrespecttoaddition.Thesumoftwooddintegersisaneveninteger.Thisstructuredoeshavetheclosurepropertyformultiplication,sincetheproductoftwooddnumbersisanoddnumber.72024/5/21CollegeofComputerScience&Technology,BUPTBinaryoperation〔二元運算〕Anoperationthatcombinestwoobjectsisabinaryoperation.Anoperationthatrequiresonlyoneobjectisaunaryoperation〔一元運算〕.Binaryoperationsoftenhavesimilarproperties,aswehaveseenearlier.Example(a)Setintersectionisabinaryoperationsinceitcombinestwosetstoproduceanewset.Producingthetransposeofmatrixisaunaryoperation.82024/5/21CollegeofComputerScience&Technology,BUPTCommutative〔交換性〕Commonpropertieshavebeengivennames.Forexample,iftheorderoftheobjectsdoesnotaffecttheoutcomeofabinaryoperation,wesaythattheoperationiscommutative.Thatis,ifx
y=y
x,whereissomebinaryoperation,iscommutative.Example(a)JoinandmeetforBooleanmatricesarecommutativeoperations.A
B=B
AandA
B=B
A.(b)OrdinarymatrixmultiplicationisnotacommutativeoperationAB
BA.92024/5/21CollegeofComputerScience&Technology,BUPTNoteanoperationhasapropertymeansthestatementofthepropertyistruewhentheoperationisusedwithanyobjectsinthestructure.Ifthereisevenonecasewhenthestatementisnottrue,theoperationdoesnothavethatproperty.102024/5/21CollegeofComputerScience&Technology,BUPTAssociative〔結合性〕Ifnisabinaryoperation,thennisassociativeorhastheassociativepropertyif(x
y)
z=x
(y
z).ExampleSetunionisanassociativeoperation,since(A
B)
C=A
(B
C)isalwaystrue.112024/5/21CollegeofComputerScience&Technology,BUPTDistributive〔分配〕propertyIfamathematicalstructurehastwobinaryoperations,say
and
,adistributivepropertyhasthefollowingpattern:
x
(y
z)=(x
y)
(x
z).Example(a)Wearefamiliarwiththedistributivepropertyforrealnumbers;ifa,b,andcarerealnumbers,thena
(b+c)=a
b+a
c.(b)Thestructure[sets,
,
,]hastwodistributiveproperties:A
(B
C)=(A
B)
(A
C)andA
(B
C)=(A
B)
(A
C).122024/5/21CollegeofComputerScience&Technology,BUPTDeMorgan‘slaws〔德.摩根律〕Severalofthestructureswehaveseenhaveaunaryoperationandtwobinaryoperations.Iftheunaryoperationis*andthebinaryoperationsare
and
.thenDeMorgan'slawsare(x
y)*=x*
y*and(x
y)*=x*
y*.Example9(a)(A
B)=A
Band(A
B)=A
B.(b)Thestructure[realnumbers,+,*,]doesnotsatisfyDeMorgan'slaws.since
132024/5/21CollegeofComputerScience&Technology,BUPTIdentity(單位元〕foranoperationAstructurewithabinaryoperation
maycontainadistinguishedobjecte,withthepropertyx
e=e
x=xforallxinthecollection.Wecalleanidentityfor
.Infact,anidentityforanoperationmustbeunique.142024/5/21CollegeofComputerScience&Technology,BUPTTheorem1Ifeisanidentityforabinaryoperation
,theneisunique.ProofAssumeanotherobjectialsohastheidentityproperty,sox
i=i
x=x.Thene
i=e,butsinceeisanidentityforn,i
e=e
i=i.Thus,i=e.Thereisatmostoneobjectwiththeidentitypropertyfor
.152024/5/21CollegeofComputerScience&Technology,BUPTExample10For[n
nmatrices,+,*,T],Inistheidentityformatrixmultiplicationandthen
nzeromatrixistheidentityformatrixaddition.162024/5/21CollegeofComputerScience&Technology,BUPTInverse〔逆元〕
Ifabinaryoperation
hasanidentitye,wesayyisa
-inverseofxifx
y=y
x=e.Theorem2If
isanassociativeoperationandxhasa
-inversey,thenyisunique.ProofAssumethereisanother
-inverseforx,sayz.Then
(z
x)
y=e
y=yandz
(x
y)=z
e=z.Since
isassociative,(z
x)
y=z
(x
y)andsoy=z.172024/5/21CollegeofComputerScience&Technology,BUPTExample11(a)Inthestructure[3
3matrices,+,*,T]eachmatrixA=[aij]hasa+-inverse,oradditiveinverse,-A=[-aij].(b)Inthestructure[integers,+,*],onlytheintegersland-lhavemultiplicativeinverses.182024/5/21CollegeofComputerScience&Technology,BUPTExample12Let
,and*bedefinedfortheset{0,l}bythefollowingtables.Thus1
0=l,0
1=0,and1*=0.Determineifeachofthefollowingistruefor[{0,l},
,
,*].(a)
iscommutative.(b)
isassociative.(c)DeMorgan'slawshold.(d)Twodistributivepropertiesholdforthestructure.192024/5/21CollegeofComputerScience&Technology,BUPTExample12
Solution(a)Thestatementx
y=y
xmustbetrueforallchoicesofxandy.Sinceboth0
landl
0arel,
iscommutative.(b)Theeightpossiblecasestobecheckedareleftasanexercise.(c)(0
0)*=0*=l0*
0*=1
1=l.(0
1)*=1*=00*
1*=1
0=0. (1
1)*=0*=l1*
1*=0
0=0. ThelastpairshowsthatDeMorgan'slawsdonotholdinthisstructure.202024/5/21CollegeofComputerScience&Technology,BUPT(d)Onepossibledistributivepropertyisx
(y
z)=(x
y)
(x
z).allpossiblecasesmustbechecked.Wecanshowitinatable.
212024/5/21CollegeofComputerScience&Technology,BUPTBinaryoperations
(二元運算)AbinaryoperationonasetAisaneverywheredefinedfunctionf:A
A
A.Abinaryoperationmustsatisfy:fassignsanelementf(a,b)ofAtoeachorderedpair(a,b)inA
A.OnlyoneelementofAisassignedtoeachorderedpair.222024/5/21CollegeofComputerScience&Technology,BUPTNoteIt’scustomarytodenotebinaryoperationsbyasymbolsuchas
,insteadoff,andtodenotetheelementassignedto(a,b)bya
b[insteadof(a,b)].Aisclosed(封閉的)
undertheoperation
,ifaandbareelementsinA,a
b
A.232024/5/21CollegeofComputerScience&Technology,BUPTExample1,2
LetA=Z.Definea
basa+b.
isabinaryoperationonZ.LetA=R.Definea
basa/b.
isnotabinaryoperation.Forexample,3
0isnotdefined.242024/5/21CollegeofComputerScience&Technology,BUPTExample3LetA=Z+.Definea
basa-b.
isnotabinaryoperation.itdoesnotassignanelementofAtoeveryorderedpairofelementsofA;forexample,2
5
A.252024/5/21CollegeofComputerScience&Technology,BUPTExample4LetA=Z.Definea
basanumberlessthanbothaandb.
isnotabinaryoperation,sinceitdoesnotassignauniqueelementofAtoeachorderedpairofelementsofA;forexample,8
6couldbe5,4,3,l,andsoon.inthiscase,
wouldbearelationfromA
AtoA,butnotafunction262024/5/21CollegeofComputerScience&Technology,BUPTExample5,6LetA=Z.Definea
basmax{a,b}.
isabinaryoperation;forexample,2
4=4,-3
(-5)=-3.LetA=P(S),forsomesetS.IfVandWaresubsetsofS,defineV
WasV
W.
isabinaryoperationonA.ifwedefineV
'WasV
W,then
'isanotherbinaryoperationonA.Note:It’spossibletodefinemanybinaryoperationsonthesameset.272024/5/21CollegeofComputerScience&Technology,BUPTExample7,8LetMbethesetofalln
nBooleanmatricesforafixedn.DefineA
BasA
B
isabinaryoperation.ThisisalsotrueofA
B.LetLbealattice.Definea
basa
b.
isabinaryoperationonL.Thisisalsotrueofa
b282024/5/21CollegeofComputerScience&Technology,BUPTTables–運算表IfA={al,a2,...,an}isafiniteset,wecandefineabinaryoperationonAbymeansofatable292024/5/21CollegeofComputerScience&Technology,BUPTExample9LetA={0,l}.Definebinaryoperations
and
bythefollowingtables:302024/5/21CollegeofComputerScience&Technology,BUPTHowmanyoperations?IfA={a,b},howmanybinaryoperationscanbedefinedonA.Everybinaryoperation
onAcanbedescribedbyatableThereare2
2
2
2=24or16waystocompletethetable.312024/5/21CollegeofComputerScience&Technology,BUPTPropertiesofBinaryOperations〔二元運算的性質〕Forallelementsa,b,andcinACommutative(可交換的)a*b=b*a
Associative(可結合的)a*(b*c)=(a*b)*cIdempotent(冪等的)a*a=a322024/5/21CollegeofComputerScience&Technology,BUPTCommutative–可交換的AbinaryoperationonasetAissaidtobecommutativeifa*b=b*aforallelementsaandbinA.Example:ThebinaryoperationofadditiononZ
ThebinaryoperationofsubtractiononZ.332024/5/21CollegeofComputerScience&Technology,BUPTCommutativeAbinaryoperationthatisdescribedbyatableiscommutativeifandon1yifTheentriesinthetablearesymmetricwithrespecttothemaindiagonal.342024/5/21CollegeofComputerScience&Technology,BUPTExample12Whichofthefol1owingbinaryoperationsonA={a,b,c,d}arecommutative?352024/5/21CollegeofComputerScience&Technology,BUPTAssociative–可結合的Abinaryoperation*onasetAissaidtobeassociativeifa*(b*c)=(a*b)*cforallelementsa,b,andcinA.Example:ThebinaryoperationofadditiononZ
ThebinaryoperationofsubtractiononZ
2-(3-5)
(2-3)-5.362024/5/21CollegeofComputerScience&Technology,BUPTExample15LetLbealattice.Thebinaryoperationdefinedbya*b=a
biscommutativeandassociative.Italsosatisfiestheidempotentpropertya
a=a.372024/5/21CollegeofComputerScience&Technology,BUPTExample16Let*beabinaryoperationonasetA,andsupposethat*satisfiesthefollowingpropertiesforanya,b,andcinA:
a=a*a
a*b=b*a
a*(b*c)=(a*b)*cDefinearelation
onAbya
bifandonlyifa=a*b.Showthat(A,
)isaposet,andforalla,binA,GLB(a,b)=a*b.382024/5/21CollegeofComputerScience&Technology,BUPTExample16:SolutionWemustshowthat
isreflexive,antisymm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學畢業(yè)生實習自我鑒定(合集15篇)
- 2024年渣土運輸行業(yè)合作合同樣本
- 教師個人年終述職報告合集15篇
- 《淘氣包馬小跳》讀后感15篇
- 英文感謝信模板集合7篇
- 2024-2025學年高中歷史 第四單元 雅爾塔體系下的冷戰(zhàn)與和平 第3課 美蘇爭霸教學教學實錄2 新人教版選修3
- 個人年度的工作計劃
- 二年級體育上冊 2.36游戲活動和立定跳遠測試教學實錄
- 九年級化學上冊 第四章 生命之源-水4.4《化學方程式》教學實錄(新版)粵教版
- 心理專業(yè)名詞解釋
- 錨索張拉伸長量計算
- 部編版語文九年級上冊單元復習課教案
- 孕酮檢驗報告
- 2024年度醫(yī)院皮膚科醫(yī)務人員績效述職統(tǒng)計報告課件
- 《成本費用控制》課件
- 醫(yī)院消防培訓方案
- 【人教部編版語文六年級上冊】選擇題專項練習復習(100道題后附答案)
- 外科醫(yī)學教學設計
- 創(chuàng)辦臺球廳的計劃書
- 廣東省廣州市越秀區(qū)2022-2023學年八年級上學期期末物理試卷
- 統(tǒng)編版語文四年級上冊《期末作文專項復習》 課件
評論
0/150
提交評論