2023-2024學年廣東省汕頭市名校中考試題猜想數(shù)學試卷含解析_第1頁
2023-2024學年廣東省汕頭市名校中考試題猜想數(shù)學試卷含解析_第2頁
2023-2024學年廣東省汕頭市名校中考試題猜想數(shù)學試卷含解析_第3頁
2023-2024學年廣東省汕頭市名校中考試題猜想數(shù)學試卷含解析_第4頁
2023-2024學年廣東省汕頭市名校中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省汕頭市名校中考試題猜想數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知一次函數(shù)y=﹣2x+3,當0≤x≤5時,函數(shù)y的最大值是()A.0B.3C.﹣3D.﹣72.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③3.下列計算錯誤的是()A.4x3?2x2=8x5B.a(chǎn)4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大5.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點A逆時針旋轉30°后得到Rt△ADE,點B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.6.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且7.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運動員射擊一次,命中靶心C.任意畫一個三角形,其內(nèi)角和是180°D.拋一枚硬幣,落地后正面朝上8.觀察下列圖形,則第n個圖形中三角形的個數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n9.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)10.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數(shù)最少是()A.4 B.5 C.6 D.7二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:.12.如圖,已知正方形ABCD的邊長為4,⊙B的半徑為2,點P是⊙B上的一個動點,則PD﹣PC的最大值為_____.13.如圖,經(jīng)過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.14.請你算一算:如果每人每天節(jié)約1粒大米,全國13億人口一天就能節(jié)約_____千克大米?。ńY果用科學記數(shù)法表示,已知1克大米約52粒)15.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態(tài)如圖所示,大正方形固定不動,把小正方形向右平移,當兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.16.若有意義,則x的取值范圍是.17.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.三、解答題(共7小題,滿分69分)18.(10分)甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數(shù)

眾數(shù)

中位數(shù)

方差

8

8

0.4

9

3.2

(2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差.(填“變大”、“變小”或“不變”).19.(5分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數(shù)和一次函數(shù)的解析式;求△AOB的面積;點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.20.(8分)如圖,拋物線y=﹣x2﹣x+4與x軸交于A,B兩點(A在B的左側),與y軸交于點C.(1)求點A,點B的坐標;(2)P為第二象限拋物線上的一個動點,求△ACP面積的最大值.21.(10分)為了提高中學生身體素質,學校開設了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學生進行問卷調查(每個被調查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).這次調查中,一共調查了________名學生;請補全兩幅統(tǒng)計圖;若有3名喜歡跳繩的學生,1名喜歡足球的學生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學生的概率.22.(10分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.23.(12分)已知:如圖,一次函數(shù)與反比例函數(shù)的圖象有兩個交點和,過點作軸,垂足為點;過點作軸,垂足為點,且,連接.求,,的值;求四邊形的面積.24.(14分)列方程或方程組解應用題:為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】【分析】由于一次函數(shù)y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數(shù)的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內(nèi)函數(shù)值的最大值.【詳解】∵一次函數(shù)y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內(nèi),x=0時,函數(shù)值最大﹣2×0+3=3,故選B.【點睛】本題考查了一次函數(shù)y=kx+b的圖象的性質:①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減小.2、A【解析】

解:∵乙出發(fā)時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.3、B【解析】

根據(jù)單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【詳解】A選項:4x3?1x1=8x5,故原題計算正確;

B選項:a4和a3不是同類項,不能合并,故原題計算錯誤;

C選項:(-x1)5=-x10,故原題計算正確;

D選項:(a-b)1=a1-1ab+b1,故原題計算正確;

故選:B.【點睛】考查了整式的乘法,關鍵是掌握整式的乘法各計算法則.4、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.5、A【解析】

先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉的性質得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點睛】本題考查扇形面積計算,熟記扇形面積公式,采用作差法計算面積是解題的關鍵.6、D【解析】

根據(jù)二次根式和分式有意義的條件計算即可.【詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【點睛】二次根式和分式有意義的條件是本題的考點,二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.7、C【解析】分析:必然事件就是一定發(fā)生的事件,依據(jù)定義即可作出判斷.詳解:A、三角形的外心到三角形的三個頂點的距離相等,三角形的內(nèi)心到三邊的距離相等,是不可能事件,故本選項不符合題意;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項不符合題意;C、三角形的內(nèi)角和是180°,是必然事件,故本選項符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機事件,故本選項不符合題意;故選C.點睛:解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.8、D【解析】試題分析:由已知的三個圖可得到一般的規(guī)律,即第n個圖形中三角形的個數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個圖形可以知道:第1個圖形中三角形的個數(shù)是4,第2個圖形中三角形的個數(shù)是8,第3個圖形中三角形的個數(shù)是12,從而得出一般的規(guī)律,第n個圖形中三角形的個數(shù)是4n.故選D.考點:規(guī)律型:圖形的變化類.9、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據(jù)第二象限點的坐標特征可寫出B點坐標;由旋轉的性質得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉,得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉,等邊三角形的性質.求解時,注意等邊三角形三線合一的性質.10、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數(shù)所以圖中的小正方體最少2+4=1.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.12、1【解析】分析:由PD?PC=PD?PG≤DG,當點P在DG的延長線上時,PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當點P在DG的延長線上時,PD?PC的值最大,最大值為DG==1.故答案為1點睛:本題考查圓綜合題、正方形的性質、相似三角形的判定和性質等知識,解題的關鍵是學會構建相似三角形解決問題,學會用轉化的思想思考問題,把問題轉化為兩點之間線段最短解決,題目比較難,屬于中考壓軸題.13、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.14、2.5×1【解析】

先根據(jù)有理數(shù)的除法求出節(jié)約大米的千克數(shù),再用科學計數(shù)法表示,對于一個絕對值較大的數(shù),用科學記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).【詳解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案為2.5×1.【點睛】本題考查了有理數(shù)的除法和正整數(shù)指數(shù)科學計數(shù)法,根據(jù)科學計算法的要求,正確確定出a和n的值是解答本題的關鍵.15、1或5.【解析】

小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離.【詳解】解:當兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點睛】此題考查了平移的性質,要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.16、x≥8【解析】略17、1【解析】

根據(jù)△ABC中DE垂直平分AC,可求出AE=CE,再根據(jù)等腰三角形的性質求出∠ACE=∠A=30°,再根據(jù)∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.三、解答題(共7小題,滿分69分)18、(1)填表見解析;(2)理由見解析;(3)變小.【解析】

(1)根據(jù)眾數(shù)、平均數(shù)和中位數(shù)的定義求解:(2)方差就是和中心偏離的程度,用來衡量一批數(shù)據(jù)的波動大?。催@批數(shù)據(jù)偏離平均數(shù)的大?。┰跇颖救萘肯嗤那闆r下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定.(3)根據(jù)方差公式求解:如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。驹斀狻吭囶}分析:試題解析:解:(1)甲的眾數(shù)為8,乙的平均數(shù)=(5+9+7+10+9)=8,乙的中位數(shù)為9.故填表如下:平均數(shù)

眾數(shù)

中位數(shù)

方差

8

8

8

0.4

8

9

9

3.2

(2)因為他們的平均數(shù)相等,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽;(3)如果乙再射擊1次,命中8環(huán),平均數(shù)不變,根據(jù)方差公式可得乙的射擊成績的方差變?。键c:1.方差;2.算術平均數(shù);3.中位數(shù);4.眾數(shù).19、(1)y=﹣,y=﹣x+2;(2)6;(3)當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【解析】

(1)利用待定系數(shù)法,即可得到反比例函數(shù)和一次函數(shù)的解析式;(2)利用一次函數(shù)解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當AO為等腰三角形腰與底時,求出點E坐標即可.【詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點:n=3×(﹣2)=﹣6,所以反比例函數(shù)解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數(shù)解析式為:y=﹣x+2;(2)當y=0時,﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當OE3=OE2=AO=,即E2(﹣,0),E3(,0);當OA=AE1=時,得到OE1=2OD=4,即E1(﹣4,0);當AE4=OE4時,由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點坐標為(﹣1,1.5),令y=0,得到y(tǒng)=﹣,即E4(﹣,0),綜上,當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟練掌握各自的性質是解題的關鍵.20、(1)A(﹣4,0),B(2,0);(2)△ACP最大面積是4.【解析】

(1)令y=0,得到關于x的一元二次方程﹣x2﹣x+4=0,解此方程即可求得結果;(2)先求出直線AC解析式,再作PD⊥AO交AC于D,設P(t,﹣t2﹣t+4),可表示出D點坐標,于是線段PD可用含t的代數(shù)式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP關于t的函數(shù)關系式,繼而可求出△ACP面積的最大值.【詳解】(1)解:設y=0,則0=﹣x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D設AC解析式y(tǒng)=kx+b∴解得:∴AC解析式為y=x+4.設P(t,﹣t2﹣t+4)則D(t,t+4)∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2∴S△ACP=PD×4=﹣(t+2)2+4∴當t=﹣2時,△ACP最大面積4.【點睛】本題考查二次函數(shù)綜合,解題的關鍵是掌握待定系數(shù)法進行求解.21、(1)200;(2)答案見解析;(3).【解析】

(1)由題意得:這次調查中,一共調查的學生數(shù)為:40÷20%=200(名);(2)根據(jù)題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數(shù)為:200×30%=60(名);則可補全統(tǒng)計圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與一人是喜歡跳繩、一人是喜歡足球的學生的情況,再利用概率公式即可求得答案.【詳解】解:(1)根據(jù)題意得:這次調查中,一共調查的學生數(shù)為:40÷20%=200(名);故答案為:200;(2)C組人數(shù):200-40-70-30=60(名)B組百分比:70÷200×100%=35%如圖(3)分別用A,B,C表示3名喜歡跳繩的學生,D表示1名喜歡足球的學生;

畫樹狀圖得:∵共有12種等可能的結果,一人是喜歡跳繩、一人是喜歡足球的學生的有6種情況,∴一人是喜歡跳繩、一人是喜歡足球的學生的概率為:.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖與扇形統(tǒng)計圖.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)詳見解析;(2)1.【解析】

(1)利用直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論