2020年北京市高考數(shù)學(xué)試卷含解析_第1頁
2020年北京市高考數(shù)學(xué)試卷含解析_第2頁
2020年北京市高考數(shù)學(xué)試卷含解析_第3頁
2020年北京市高考數(shù)學(xué)試卷含解析_第4頁
2020年北京市高考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2020年北京市高考數(shù)學(xué)試卷一、選擇題10小題,每小題4分,共40分.在每小題列出的四個選項中,選出符合題目要求的一項.1.已知集合,,則().A. B. C. D.2.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點的坐標是,則().A. B. C. D.3.在的展開式中,的系數(shù)為().A. B.5 C. D.104.某三棱柱底面為正三角形,其三視圖如圖所示,該三棱柱的表面積為().A. B. C. D.5.已知半徑為1圓經(jīng)過點,則其圓心到原點的距離的最小值為().A.4 B.5 C.6 D.76.已知函數(shù),則不等式的解集是().A. B.C. D.7.設(shè)拋物線的頂點為,焦點為,準線為.是拋物線上異于的一點,過作于,則線段的垂直平分線().A.經(jīng)過點 B.經(jīng)過點C.平行于直線 D.垂直于直線8.在等差數(shù)列中,,.記,則數(shù)列().A.有最大項,有最小項 B.有最大項,無最小項C.無最大項,有最小項 D.無最大項,無最小項9.已知,則“存在使得”是“”的().A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.2020年3月14日是全球首個國際圓周率日(Day).歷史上,求圓周率的方法有多種,與中國傳統(tǒng)數(shù)學(xué)中的“割圓術(shù)”相似.?dāng)?shù)學(xué)家阿爾·卡西的方法是:當(dāng)正整數(shù)充分大時,計算單位圓的內(nèi)接正邊形的周長和外切正邊形(各邊均與圓相切的正邊形)的周長,將它們的算術(shù)平均數(shù)作為的近似值.按照阿爾·卡西的方法,的近似值的表達式是().A. B.C. D.第二部分(非選擇題共110分)二、填空題共5小題,每小題5分,共25分.11.函數(shù)定義域是____________.12.已知雙曲線,則C的右焦點的坐標為_________;C的焦點到其漸近線的距離是_________.13.已知正方形的邊長為2,點P滿足,則_________;_________.14.若函數(shù)的最大值為2,則常數(shù)的一個取值為________.15.為滿足人民對美好生活的向往,環(huán)保部門要求相關(guān)企業(yè)加強污水治理,排放未達標的企業(yè)要限期整改,設(shè)企業(yè)的污水排放量W與時間t的關(guān)系為,用的大小評價在這段時間內(nèi)企業(yè)污水治理能力的強弱,已知整改期內(nèi),甲、乙兩企業(yè)的污水排放量與時間的關(guān)系如下圖所示.

給出下列四個結(jié)論:①在這段時間內(nèi),甲企業(yè)的污水治理能力比乙企業(yè)強;②在時刻,甲企業(yè)的污水治理能力比乙企業(yè)強;③在時刻,甲、乙兩企業(yè)的污水排放都已達標;④甲企業(yè)在這三段時間中,在的污水治理能力最強.其中所有正確結(jié)論的序號是____________________.三、解答題共6小題,共85分,解答應(yīng)寫出文字說明,演算步驟或證明過程.16.如圖,在正方體中,E為的中點.

(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.17.在中,,再從條件①、條件②這兩個條件中選擇一個作己知,求:(Ⅰ)a的值:(Ⅱ)和的面積.條件①:;條件②:.注:如果選擇條件①和條件②分別解答,按第一個解答計分.18.某校為舉辦甲、乙兩項不同活動,分別設(shè)計了相應(yīng)的活動方案:方案一、方案二.為了解該校學(xué)生對活動方案是否支持,對學(xué)生進行簡單隨機抽樣,獲得數(shù)據(jù)如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假設(shè)所有學(xué)生對活動方案否支持相互獨立.(Ⅰ)分別估計該校男生支持方案一的概率、該校女生支持方案一的概率;(Ⅱ)從該校全體男生中隨機抽取2人,全體女生中隨機抽取1人,估計這3人中恰有2人支持方案一的概率;(Ⅲ)將該校學(xué)生支持方案的概率估計值記為,假設(shè)該校一年級有500名男生和300名女生,除一年級外其他年級學(xué)生支持方案二的概率估計值記為,試比較與的大?。ńY(jié)論不要求證明)19.已知函數(shù).(Ⅰ)求曲線的斜率等于的切線方程;(Ⅱ)設(shè)曲線在點處的切線與坐標軸圍成的三角形的面積為,求的最小值.20.已知橢圓過點,且.(Ⅰ)求橢圓C的方程:(Ⅱ)過點的直線l交橢圓C于點,直線分別交直線于點.求的值.21.已知是無窮數(shù)列.給出兩個性質(zhì):①對于中任意兩項,在中都存在一項,使;②對于中任意項,在中都存在兩項.使得.(Ⅰ)若,判斷數(shù)列是否滿足性質(zhì)①,說明理由;(Ⅱ)若,判斷數(shù)列是否同時滿足性質(zhì)①和性質(zhì)②,說明理由;(Ⅲ)若是遞增數(shù)列,且同時滿足性質(zhì)①和性質(zhì)②,證明:為等比數(shù)列.絕密★本科目考試啟用前2020年普通高等學(xué)校招生全國統(tǒng)一考試(北京卷)數(shù)學(xué)本試卷共5頁,150分,考試時長120分鐘.考試務(wù)必將答案答在答題卡上,在試卷上作答無效.考試結(jié)束后,將本試卷和答題卡一并交回.第一部分(選擇題共40分)一、選擇題10小題,每小題4分,共40分.在每小題列出的四個選項中,選出符合題目要求的一項.1.已知集合,,則().A. B. C. D.【答案】D【解析】【分析】根據(jù)交集定義直接得結(jié)果.【詳解】,故選:D.【點睛】本題考查集合交集概念,考查基本分析求解能力,屬基礎(chǔ)題.2.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點的坐標是,則().A. B. C. D.【答案】B【解析】【分析】先根據(jù)復(fù)數(shù)幾何意義得,再根據(jù)復(fù)數(shù)乘法法則得結(jié)果.【詳解】由題意得,.故選:B.【點睛】本題考查復(fù)數(shù)幾何意義以及復(fù)數(shù)乘法法則,考查基本分析求解能力,屬基礎(chǔ)題.3.在的展開式中,的系數(shù)為().A. B.5 C. D.10【答案】C【解析】【分析】首先寫出展開式的通項公式,然后結(jié)合通項公式確定的系數(shù)即可.【詳解】展開式的通項公式為:,令可得:,則的系數(shù)為:.故選:C.【點睛】二項式定理的核心是通項公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項)和通項公式,建立方程來確定指數(shù)(求解時要注意二項式系數(shù)中n和r的隱含條件,即n,r均為非負整數(shù),且n≥r,如常數(shù)項指數(shù)為零、有理項指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項.4.某三棱柱的底面為正三角形,其三視圖如圖所示,該三棱柱的表面積為().

A. B. C. D.【答案】D【解析】【分析】首先確定幾何體的結(jié)構(gòu)特征,然后求解其表面積即可.【詳解】由題意可得,三棱柱的上下底面為邊長為2的等邊三角形,側(cè)面為三個邊長為2的正方形,則其表面積為:.故選:D.【點睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和.5.已知半徑為1的圓經(jīng)過點,則其圓心到原點的距離的最小值為().A.4 B.5 C.6 D.7【答案】A【解析】【分析】求出圓心的軌跡方程后,根據(jù)圓心到原點的距離減去半徑1可得答案.【詳解】設(shè)圓心,則,化簡得,所以圓心的軌跡是以為圓心,1為半徑的圓,所以,所以,當(dāng)且僅當(dāng)在線段上時取得等號,故選:A.【點睛】本題考查了圓的標準方程,屬于基礎(chǔ)題.6.已知函數(shù),則不等式的解集是().A. B.C. D.【答案】D【解析】【分析】作出函數(shù)和的圖象,觀察圖象可得結(jié)果.【詳解】因為,所以等價于,在同一直角坐標系中作出和的圖象如圖:兩函數(shù)圖象的交點坐標為,不等式的解為或.所以不等式的解集為:.故選:D.【點睛】本題考查了圖象法解不等式,屬于基礎(chǔ)題.7.設(shè)拋物線的頂點為,焦點為,準線為.是拋物線上異于的一點,過作于,則線段的垂直平分線().A.經(jīng)過點 B.經(jīng)過點C.平行于直線 D.垂直于直線【答案】B【解析】【分析】依據(jù)題意不妨作出焦點在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點,即求解.【詳解】如圖所示:.因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點.故選:B.【點睛】本題主要考查拋物線的定義的應(yīng)用,屬于基礎(chǔ)題.8.在等差數(shù)列中,,.記,則數(shù)列().A.有最大項,有最小項 B.有最大項,無最小項C.無最大項,有最小項 D.無最大項,無最小項【答案】B【解析】【分析】首先求得數(shù)列的通項公式,然后結(jié)合數(shù)列中各個項數(shù)的符號和大小即可確定數(shù)列中是否存在最大項和最小項.【詳解】由題意可知,等差數(shù)列的公差,則其通項公式為:,注意到,且由可知,由可知數(shù)列不存在最小項,由于,故數(shù)列中正項只有有限項:,.故數(shù)列中存在最大項,且最大項為.故選:B.【點睛】本題主要考查等差數(shù)列的通項公式,等差數(shù)列中項的符號問題,分類討論的數(shù)學(xué)思想等知識,屬于中等題.9.已知,則“存在使得”是“”的().A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】C【解析】【分析】根據(jù)充分條件,必要條件的定義,以及誘導(dǎo)公式分類討論即可判斷.【詳解】(1)當(dāng)存在使得時,若為偶數(shù),則;若為奇數(shù),則;(2)當(dāng)時,或,,即或,亦即存在使得.所以,“存在使得”是“”的充要條件.故選:C.【點睛】本題主要考查充分條件,必要條件的定義的應(yīng)用,誘導(dǎo)公式的應(yīng)用,涉及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.10.2020年3月14日是全球首個國際圓周率日(Day).歷史上,求圓周率的方法有多種,與中國傳統(tǒng)數(shù)學(xué)中的“割圓術(shù)”相似.?dāng)?shù)學(xué)家阿爾·卡西的方法是:當(dāng)正整數(shù)充分大時,計算單位圓的內(nèi)接正邊形的周長和外切正邊形(各邊均與圓相切的正邊形)的周長,將它們的算術(shù)平均數(shù)作為的近似值.按照阿爾·卡西的方法,的近似值的表達式是().A. B.C. D.【答案】A【解析】【分析】計算出單位圓內(nèi)接正邊形和外切正邊形的周長,利用它們的算術(shù)平均數(shù)作為的近似值可得出結(jié)果.【詳解】單位圓內(nèi)接正邊形的每條邊所對應(yīng)的圓周角為,每條邊長為,所以,單位圓的內(nèi)接正邊形的周長為,單位圓的外切正邊形的每條邊長為,其周長為,,則.故選:A.【點睛】本題考查圓周率的近似值的計算,根據(jù)題意計算出單位圓內(nèi)接正邊形和外切正邊形的周長是解答的關(guān)鍵,考查計算能力,屬于中等題.第二部分(非選擇題共110分)二、填空題共5小題,每小題5分,共25分.11.函數(shù)的定義域是____________.【答案】【解析】【分析】根據(jù)分母不為零、真數(shù)大于零列不等式組,解得結(jié)果.【詳解】由題意得,故答案為:【點睛】本題考查函數(shù)定義域,考查基本分析求解能力,屬基礎(chǔ)題.12.已知雙曲線,則C的右焦點的坐標為_________;C的焦點到其漸近線的距離是_________.【答案】(1).(2).【解析】【分析】根據(jù)雙曲線的標準方程可得出雙曲線的右焦點坐標,并求得雙曲線的漸近線方程,利用點到直線的距離公式可求得雙曲線的焦點到漸近線的距離.【詳解】在雙曲線中,,,則,則雙曲線的右焦點坐標為,雙曲線的漸近線方程為,即,所以,雙曲線的焦點到其漸近線的距離為.故答案為:;.【點睛】本題考查根據(jù)雙曲線的標準方程求雙曲線的焦點坐標以及焦點到漸近線的距離,考查計算能力,屬于基礎(chǔ)題.13.已知正方形的邊長為2,點P滿足,則_________;_________.【答案】(1).(2).【解析】【分析】以點為坐標原點,、所在直線分別為、軸建立平面直角坐標系,求得點的坐標,利用平面向量數(shù)量積的坐標運算可求得以及的值.【詳解】以點為坐標原點,、所在直線分別為、軸建立如下圖所示的平面直角坐標系,則點、、、,,則點,,,因此,,.故答案為:;.【點睛】本題考查平面向量的模和數(shù)量積的計算,建立平面直角坐標系,求出點的坐標是解答的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.14.若函數(shù)的最大值為2,則常數(shù)的一個取值為________.【答案】(均可)【解析】【分析】根據(jù)兩角和的正弦公式以及輔助角公式即可求得,可得,即可解出.【詳解】因為,所以,解得,故可取.故答案為:(均可).【點睛】本題主要考查兩角和的正弦公式,輔助角公式的應(yīng)用,以及平方關(guān)系的應(yīng)用,考查學(xué)生的數(shù)學(xué)運算能力,屬于基礎(chǔ)題.15.為滿足人民對美好生活的向往,環(huán)保部門要求相關(guān)企業(yè)加強污水治理,排放未達標的企業(yè)要限期整改,設(shè)企業(yè)的污水排放量W與時間t的關(guān)系為,用的大小評價在這段時間內(nèi)企業(yè)污水治理能力的強弱,已知整改期內(nèi),甲、乙兩企業(yè)的污水排放量與時間的關(guān)系如下圖所示.

給出下列四個結(jié)論:①在這段時間內(nèi),甲企業(yè)的污水治理能力比乙企業(yè)強;②在時刻,甲企業(yè)的污水治理能力比乙企業(yè)強;③在時刻,甲、乙兩企業(yè)的污水排放都已達標;④甲企業(yè)在這三段時間中,在的污水治理能力最強.其中所有正確結(jié)論的序號是____________________.【答案】①②③【解析】【分析】根據(jù)定義逐一判斷,即可得到結(jié)果【詳解】表示區(qū)間端點連線斜率的負數(shù),在這段時間內(nèi),甲的斜率比乙的小,所以甲的斜率的相反數(shù)比乙的大,因此甲企業(yè)的污水治理能力比乙企業(yè)強;①正確;甲企業(yè)在這三段時間中,甲企業(yè)在這段時間內(nèi),甲的斜率最小,其相反數(shù)最大,即在的污水治理能力最強.④錯誤;在時刻,甲切線的斜率比乙的小,所以甲切線的斜率的相反數(shù)比乙的大,甲企業(yè)的污水治理能力比乙企業(yè)強;②正確;在時刻,甲、乙兩企業(yè)的污水排放量都在污水打標排放量以下,所以都已達標;③正確;故答案為:①②③【點睛】本題考查斜率應(yīng)用、切線斜率應(yīng)用、函數(shù)圖象應(yīng)用,考查基本分析識別能力,屬中檔題.三、解答題共6小題,共85分,解答應(yīng)寫出文字說明,演算步驟或證明過程.16.如圖,在正方體中,E為的中點.

(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.【答案】(Ⅰ)證明見解析;(Ⅱ).【解析】【分析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;(Ⅱ)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可計算出直線與平面所成角的正弦值.【詳解】(Ⅰ)如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;(Ⅱ)以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,設(shè)正方體的棱長為,則、、、,,,設(shè)平面的法向量為,由,得,令,則,,則..因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法計算直線與平面所成角的正弦值,考查計算能力,屬于基礎(chǔ)題.17.在中,,再從條件①、條件②這兩個條件中選擇一個作為己知,求:(Ⅰ)a的值:(Ⅱ)和面積.條件①:;條件②:.注:如果選擇條件①和條件②分別解答,按第一個解答計分.【答案】選擇條件①(Ⅰ)8(Ⅱ),;選擇條件②(Ⅰ)6(Ⅱ),.【解析】【分析】選擇條件①(Ⅰ)根據(jù)余弦定理直接求解,(Ⅱ)先根據(jù)三角函數(shù)同角關(guān)系求得,再根據(jù)正弦定理求,最后根據(jù)三角形面積公式求結(jié)果;選擇條件②(Ⅰ)先根據(jù)三角函數(shù)同角關(guān)系求得,再根據(jù)正弦定理求結(jié)果,(Ⅱ)根據(jù)兩角和正弦公式求,再根據(jù)三角形面積公式求結(jié)果.【詳解】選擇條件①(Ⅰ)(Ⅱ)由正弦定理得:選擇條件②(Ⅰ)由正弦定理得:(Ⅱ)【點睛】本題考查正弦定理、余弦定理,三角形面積公式,考查基本分析求解能力,屬中檔題.18.某校為舉辦甲、乙兩項不同活動,分別設(shè)計了相應(yīng)的活動方案:方案一、方案二.為了解該校學(xué)生對活動方案是否支持,對學(xué)生進行簡單隨機抽樣,獲得數(shù)據(jù)如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假設(shè)所有學(xué)生對活動方案否支持相互獨立.(Ⅰ)分別估計該校男生支持方案一的概率、該校女生支持方案一的概率;(Ⅱ)從該校全體男生中隨機抽取2人,全體女生中隨機抽取1人,估計這3人中恰有2人支持方案一的概率;(Ⅲ)將該校學(xué)生支持方案的概率估計值記為,假設(shè)該校一年級有500名男生和300名女生,除一年級外其他年級學(xué)生支持方案二的概率估計值記為,試比較與的大小.(結(jié)論不要求證明)【答案】(Ⅰ)該校男生支持方案一的概率為,該校女生支持方案一的概率為;(Ⅱ),(Ⅲ)【解析】【分析】(Ⅰ)根據(jù)頻率估計概率,即得結(jié)果;(Ⅱ)先分類,再根據(jù)獨立事件概率乘法公式以及分類計數(shù)加法公式求結(jié)果;(Ⅲ)先求,再根據(jù)頻率估計概率,即得大小.【詳解】(Ⅰ)該校男生支持方案一的概率為,該校女生支持方案一的概率為;(Ⅱ)3人中恰有2人支持方案一分兩種情況,(1)僅有兩個男生支持方案一,(2)僅有一個男生支持方案一,一個女生支持方案一,所以3人中恰有2人支持方案一概率為:;(Ⅲ)【點睛】本題考查利用頻率估計概率、獨立事件概率乘法公式,考查基本分析求解能力,屬基礎(chǔ)題.19.已知函數(shù).(Ⅰ)求曲線的斜率等于的切線方程;(Ⅱ)設(shè)曲線在點處的切線與坐標軸圍成的三角形的面積為,求的最小值.【答案】(Ⅰ),(Ⅱ).【解析】【分析】(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義可得切點的坐標,然后由點斜式可得結(jié)果;(Ⅱ)根據(jù)導(dǎo)數(shù)的幾何意義求出切線方程,再得到切線在坐標軸上的截距,進一步得到三角形的面積,最后利用導(dǎo)數(shù)可求得最值.【詳解】(Ⅰ)因為,所以,設(shè)切點為,則,即,所以切點為,由點斜式可得切線方程為:,即.(Ⅱ)顯然,因為在點處的切線方程為:,令,得,令,得,所以,不妨設(shè)時,結(jié)果一樣,則,所以,由,得,由,得,所以在上遞減,在上遞增,所以時,取得極小值,也是最小值為.【點睛】本題考查了利用導(dǎo)數(shù)的幾何意義求切線方程,考查了利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題.20.已知橢圓過點,且.(Ⅰ)求橢圓C的方程:(Ⅱ)過點的直線l交橢圓C于點,直線分別交直線于點.求的值.【答案】(Ⅰ);(Ⅱ)1.【解析】【分析】(Ⅰ)由題意得到關(guān)于a,b的方程組,求解方程組即可確定橢圓方程;(Ⅱ)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點P,Q的縱坐標,將線段長度的比值轉(zhuǎn)化為縱坐標比值的問題,進一步結(jié)合韋達定理可證得,從而可得兩線段長度的比值.【詳解】(1)設(shè)橢圓方程為:,由題意可得:,解得:,故橢圓方程為:.(2)設(shè),,直線方程為:,與橢圓方程聯(lián)立可得:,即:,則:.直線MA的方程為:,令可得:,同理可得:.很明顯,且:,注意到:,而:,故.從而.【點睛】解決直線與橢圓綜合問題時,要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題.21.已知是無窮數(shù)列.給出兩個性質(zhì):①對于中任意兩項,在中都存在一項,使;②對于中任意項,在中都存在兩項.使得.(Ⅰ)若,判斷數(shù)列是否滿足性質(zhì)①,說明理由;(Ⅱ)若,判斷數(shù)列是否同時滿足性質(zhì)①和性質(zhì)②,說明理由;(Ⅲ)若是遞增數(shù)列,且同時滿足性質(zhì)①和性質(zhì)②,證明:為等比數(shù)列.【答案】(Ⅰ)詳見解析;(Ⅱ)詳解解析;(Ⅲ)證明詳見解析.【解析】【分析】(Ⅰ)根據(jù)定義驗證,即可判斷;(Ⅱ)根據(jù)定義逐一驗證,即可判斷;(Ⅲ)解法一:首先,證明數(shù)列中的項數(shù)同號,然后證明,最后,用數(shù)學(xué)歸納法證明數(shù)列為等比數(shù)列即可.解法二:首先假設(shè)數(shù)列中的項數(shù)均為正數(shù),然后證得成等比數(shù)列,之后證得成等比數(shù)列,同理即可證得數(shù)列為等比數(shù)列,從而命題得證.【詳解】(Ⅰ)不具有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論