版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年鄂西南三校合作體數(shù)學(xué)高一下期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的公差為2,前項和為,且,則的值為A.11 B.12 C.13 D.142.棱長為2的正四面體的表面積是()A. B.4 C. D.163.設(shè)等差數(shù)列的前項的和為,若,,且,則()A. B. C. D.4.在銳角中,內(nèi)角,,所對的邊分別為,,,若的面積為,且,則的周長的取值范圍是A. B.C. D.5.直線,,的斜率分別為,,,如圖所示,則()A. B.C. D.6.已知等差數(shù)列中,若,則()A.1 B.2 C.3 D.47.在區(qū)間上隨機(jī)選取一個數(shù),則的概率為()A. B. C. D.8.已知等差數(shù)列的公差為2,且是與的等比中項,則等于()A. B. C. D.9.已知,且,則實數(shù)的值為()A.2 B. C.3 D.10.?dāng)?shù)列1,,,…,的前n項和為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,滿足,與的夾角為,則在上的投影是;12.如圖,在中,,,點D為BC的中點,設(shè),.的值為___________.13.已知平行四邊形的周長為,,則平行四邊形的面積是_______14.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____.15.方程組的增廣矩陣是________.16.展開式中,各項系數(shù)之和為,則展開式中的常數(shù)項為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某高校自主招生一次面試成績的莖葉圖和頻率分布直方圖均收到了不同程度的損壞,其可見部分信息如下,據(jù)此解答下列問題:(1)求參加此次高校自主招生面試的總?cè)藬?shù)、面試成績的中位數(shù)及分?jǐn)?shù)在內(nèi)的人數(shù);(2)若從面試成績在內(nèi)的學(xué)生中任選三人進(jìn)行隨機(jī)復(fù)查,求恰好有二人分?jǐn)?shù)在內(nèi)的概率.18.如圖,在△ABC中,A(5,–2),B(7,4),且AC邊的中點M在y軸上,BC的中點N在x軸上.(1)求點C的坐標(biāo);(2)求△ABC的面積.19.己知數(shù)列的前項和,求數(shù)列的通項.20.在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進(jìn)面包,然后以5元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以1元/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.(1)求食堂面包需求量的平均數(shù);(2)求T關(guān)于x的函數(shù)解析式;(3)根據(jù)直方圖估計利潤T不少于100元的概率.21.在平面直角坐標(biāo)系中,為坐標(biāo)原點,已知向量,又點,,,.(1)若,且,求向量;(2)若向量與向量共線,常數(shù),求的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
利用等差數(shù)列通項公式及前n項和公式,即可得到結(jié)果.【詳解】∵等差數(shù)列的公差為2,且,∴∴∴.故選:C【點睛】本題考查了等差數(shù)列的通項公式及前n項和公式,考查計算能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)題意求出一個面的面積,然后乘以4即可得到正四面體的表面積.【詳解】每個面的面積為,∴正四面體的表面積為.【點睛】本題考查正四面體的表面積,正四面體四個面均為正三角形.3、C【解析】,,,,,,故選C.4、C【解析】
首先根據(jù)面積公式和余弦定理可將已知變形為,,然后根據(jù)正弦定理,將轉(zhuǎn)化為,利用,化簡為,再根據(jù)三角形是銳角三角形,得到的范圍,轉(zhuǎn)化為三角函數(shù)求取值范圍的問題.【詳解】因為的面積為,所以,所以,由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【點睛】本題考查了正余弦定理和三角形面積公式,以及輔助角公式和三角函數(shù)求取值范圍的問題,屬于中檔題型,本題需認(rèn)真審題,當(dāng)是銳角三角形時,需滿足三個角都是銳角,即.5、A【解析】
根據(jù)題意可得出直線,,的傾斜角滿足,由傾斜角與斜率的關(guān)系得出結(jié)果.【詳解】解:設(shè)三條直線的傾斜角為,根據(jù)三條直線的圖形可得,因為,當(dāng)時,,當(dāng)時,單調(diào)遞增,且,故,即故選A.【點睛】本題考查了直線的傾斜角與斜率的關(guān)系,解題的關(guān)鍵是熟悉正切函數(shù)的單調(diào)性.6、A【解析】
根據(jù)已知先求出數(shù)列的首項,公差d已知,可得?!驹斀狻坑深}得,,解得,則.故選:A【點睛】本題考查用數(shù)列的通項公式求某一項,是基礎(chǔ)題。7、C【解析】
根據(jù)幾何概型概率公式直接求解可得結(jié)果.【詳解】由幾何概型概率公式可知,所求概率本題正確選項:【點睛】本題考查幾何概型中的長度型概率問題的求解,屬于基礎(chǔ)題.8、A【解析】
直接利用等差數(shù)列公式和等比中項公式得到答案.【詳解】是與的等比中項,故即解得:故選:A【點睛】本題考查了等差數(shù)列和等比中項,屬于??碱}型.9、D【解析】
根據(jù)二角和與差的正弦公式化簡,,再切化弦,即可求解.【詳解】由題意又解得故選:【點睛】本題考查兩角和與差的正弦公式,屬于基礎(chǔ)題.10、B【解析】
數(shù)列為,則所以前n項和為.故選B二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】考查向量的投影定義,在上的投影等于的模乘以兩向量夾角的余弦值12、【解析】
在和在中,根據(jù)正弦定理,分別表示出.由可得等式,代入已知條件化簡即可得解.【詳解】在中,由正弦定理可得,則在中,由正弦定理可得,則點D為BC的中點,則所以因為,,由誘導(dǎo)公式可知代入上述兩式可得所以故答案為:【點睛】本題考查了正弦定理的簡單應(yīng)用,屬于基礎(chǔ)題.13、【解析】
設(shè),根據(jù)條件可以求出,兩邊平方可以得到關(guān)系式,由余弦定理可以表示出,把代入得到的關(guān)系式,聯(lián)立求出的值,過作垂直于,設(shè),則可以表示,利用勾股定理,求出的值,確定長,即求出平行四邊形的面積【詳解】設(shè)又,由余弦定理將代入,得到將(2)代入(1)得到可以解得:(另一種情況不影響結(jié)果),過作垂直于,設(shè),則,所以填寫【點睛】幾何題如果關(guān)系量理清不了,可以嘗試作圖,引入相鄰邊的參數(shù),通過方程把參數(shù)求出,平行四邊形問題可以通過轉(zhuǎn)化變?yōu)槿切螁栴},進(jìn)而把問題簡單化.14、【解析】
由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進(jìn)而利用正弦函數(shù)的圖象和性質(zhì)即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點睛】本題主要考查了正弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.15、【解析】
理解方程增廣矩陣的涵義,即可由二元線性方程組,寫出增廣矩陣.【詳解】由題意,方程組的增廣矩陣為其系數(shù)以及常數(shù)項構(gòu)成的矩陣,故方程組的增廣矩陣是.故答案為:【點睛】本題考查了二元一次方程組與增廣矩陣的關(guān)系,需理解增廣矩陣的涵義,屬于基礎(chǔ)題.16、【解析】令,則,即,因為的展開式的通項為,所以展開式中常數(shù)項為,即常數(shù)項為.點睛:本題考查二項式定理;求二項展開式的各項系數(shù)的和往往利用賦值法(常賦值為),還要注意整體賦值,且要注意展開式各項系數(shù)和二項式系數(shù)的區(qū)別.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;(2)0.6【解析】
(1)從分?jǐn)?shù)落在,的頻率為,人數(shù)為2,求出總?cè)藬?shù)的值,從而求出面試成績的中位數(shù)及分?jǐn)?shù)在,內(nèi)的人數(shù);(2)用列舉法列出所有可能結(jié)果,確定其中符合要求的事件,即可求出概率.【詳解】(1)∵分?jǐn)?shù)落在的頻率為,人數(shù)為2,∴,故,∵分?jǐn)?shù)在的人數(shù)為15人,∴分?jǐn)?shù)在的人數(shù)為人,又∵分?jǐn)?shù)在的人數(shù)為人,∴分?jǐn)?shù)在的人數(shù)為人,面試成績的中位數(shù)為分;(2)由(1)知分?jǐn)?shù)在的有5人,分?jǐn)?shù)在內(nèi)的有3人,記分?jǐn)?shù)在的5人為1,2,3,4,5號,分?jǐn)?shù)在內(nèi)的3人為1,2,3號,則從這5人中任選3人的基本事件為:123,124,125,134,135,145,234,235,245,345,共10種方式;其中恰有2人的分?jǐn)?shù)在內(nèi)的基本事件為:124,125,134,135,234,235,共6種方式,所以所求概率為.【點睛】本題考查頻率分布直方圖和莖葉圖的綜合應(yīng)用,考查古典概型的概率求法,屬于基礎(chǔ)題.18、(1)(–5,–4)(2)【解析】
(1)設(shè)點,根據(jù)題意寫出關(guān)于的方程組,得到點坐標(biāo);(2)由兩點間距離公式求出,再由兩點得到直線的方程,利用點到直線的距離公式,求出點到的距離,由三角形面積公式得到答案.【詳解】(1)由題意,設(shè)點,根據(jù)AC邊的中點M在y軸上,BC的中點N在x軸上,根據(jù)中點公式,可得,解得,所以點的坐標(biāo)是.(2)因為,得.,所以直線的方程為,即,故點到直線的距離,所以的面積.【點睛】本題考查中點坐標(biāo)公式,兩點間距離公式,點到直線的距離公式,屬于簡單題.19、【解析】
根據(jù)通項前項和的關(guān)系求解即可.【詳解】解:當(dāng)時,.當(dāng)時,.當(dāng)時,上式也成立.【點睛】本題主要考查了根據(jù)前項公式求解通項公式的方法.屬于基礎(chǔ)題.20、(1)84;(2);(3)【解析】
(1)每個小矩形的面積乘以該組中間值,所得數(shù)據(jù)求和就是平均數(shù);(2)根據(jù)需求量分段表示函數(shù)關(guān)系;(3)根據(jù)(1)利潤T不少于100元時,即,即,求出其頻率,即可估計概率.【詳解】(1)估計食堂面包需求量的平均數(shù)為:(2)解:由題意,當(dāng)時,利潤,當(dāng)時,利潤,即T關(guān)于x的函數(shù)解析式(3)解:由題意,設(shè)利潤T不少于100元為事件A,由(1)知,利潤T不少于100元時,即,即,由直方圖可知,當(dāng)時,所求概率為【點睛】此題考查頻率分布直方圖,根據(jù)頻率分布直方圖求平均數(shù),計算頻率,以及建立函數(shù)模型解決實際問題,綜合性比較強(qiáng).21、(1)或;(2)當(dāng)時的值域為.時的值域為.【解析】分析:(1)由已知表示出向量,再根據(jù),且,建立方程組求出,即可求得向量;(2)由已知表示出向量,結(jié)合向量與向量共
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 政府公共關(guān)系(第二版)課件 第13章 政府公共關(guān)系危機(jī)管理
- 初中綜合實踐活動計劃
- 《朝花夕拾》讀后感作文10篇
- 商務(wù)工作計劃3篇
- 2025年己二酸二甲酯合作協(xié)議書
- 2025年多功能水質(zhì)現(xiàn)場監(jiān)測儀項目合作計劃書
- 2025年脫毛劑合作協(xié)議書
- 人教版初中化學(xué)總復(fù)習(xí)
- 吊車租賃合同范本
- 門市房租房協(xié)議
- 期末綜合試卷(試題)2024-2025學(xué)年人教版數(shù)學(xué)五年級上冊(含答案)
- 2024-2025學(xué)年上學(xué)期武漢小學(xué)語文六年級期末模擬試卷
- 2023-2024學(xué)年貴州省貴陽外國語實驗中學(xué)八年級(上)期末數(shù)學(xué)試卷(含答案)
- 《爭做文明班級》課件
- 遼寧省大連市沙河口區(qū)2022-2023學(xué)年八年級上學(xué)期物理期末試卷(含答案)
- 江蘇省南通市2024屆高三上學(xué)期第一次調(diào)研測試(一模)生物 含答案
- 2024年四川省內(nèi)江市中考?xì)v史試卷
- 國網(wǎng)安全責(zé)任清單培訓(xùn)
- 南京大學(xué)碩士論文模板
- 少兒春晚合同模板
- 醫(yī)用機(jī)械外骨骼產(chǎn)品供應(yīng)鏈分析
評論
0/150
提交評論