![甘肅省天水市清水縣第六中學2024年數(shù)學高一下期末檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M02/31/39/wKhkFmZSuY6AapONAAHu1ypAank639.jpg)
![甘肅省天水市清水縣第六中學2024年數(shù)學高一下期末檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M02/31/39/wKhkFmZSuY6AapONAAHu1ypAank6392.jpg)
![甘肅省天水市清水縣第六中學2024年數(shù)學高一下期末檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M02/31/39/wKhkFmZSuY6AapONAAHu1ypAank6393.jpg)
![甘肅省天水市清水縣第六中學2024年數(shù)學高一下期末檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M02/31/39/wKhkFmZSuY6AapONAAHu1ypAank6394.jpg)
![甘肅省天水市清水縣第六中學2024年數(shù)學高一下期末檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M02/31/39/wKhkFmZSuY6AapONAAHu1ypAank6395.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省天水市清水縣第六中學2024年數(shù)學高一下期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在正四棱柱,,則異面直線與所成角的余弦值為A. B. C. D.2.已知函數(shù)若關于的方程恰有兩個互異的實數(shù)解,則的取值范圍為A. B. C. D.3.袋中共有完全相同的4只小球,編號為1,2,3,4,現(xiàn)從中任取2只小球,則取出的2只球編號之和是偶數(shù)的概率為()A. B. C. D.4.已知函數(shù)f(x)=x,x≥0,|x2A.a(chǎn)<0 B.0<a<1 C.a(chǎn)>1 D.a(chǎn)≥15.已知實數(shù)滿足,則的最大值為()A.8 B.2 C.4 D.66.若則所在象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知向量,滿足,和的夾角為,則()A. B. C. D.18.已知,則值為A. B. C. D.9.在中,角所對的邊分別為,若,,,則等于()A.4 B. C. D.10.下列各角中與角終邊相同的角是A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若點到直線的距離是,則實數(shù)=______.12.已知,則的取值范圍是_______;13.當函數(shù)取得最大值時,=__________.14.已知內接于拋物線,其中O為原點,若此內接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.15.在中,角,,所對的邊分別為,,,若的面積為,且,,成等差數(shù)列,則最小值為______.16.設數(shù)列的前項和為滿足:,則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某校團委會組織某班以小組為單位利用周末時間進行一次社會實踐活動,每個小組有5名同學,在活動結束后,學校團委會對該班的所有同學進行了測試,該班的A,B兩個小組所有同學得分(百分制)的莖葉圖如圖所示,其中B組一同學的分數(shù)已被污損,但知道B組學生的平均分比A組同學的平均分高一分.(1)若在B組學生中隨機挑選1人,求其得分超過86分的概率;(2)現(xiàn)從A、B兩組學生中分別隨機抽取1名同學,設其分數(shù)分別為m、n,求的概率.18.已知,為兩非零有理數(shù)列(即對任意的,,均為有理數(shù)),為一個無理數(shù)列(即對任意的,為無理數(shù)).(1)已知,并且對任意的恒成立,試求的通項公式;(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為;(3)已知,,試計算.19.設函數(shù),其中向量,.(1)求函數(shù)的最小正周期與單調遞減區(qū)間;(2)在中,、、分別是角、、的對邊,已知,,的面積為,求外接圓半徑.20.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項和Sn.21.如圖,在四棱錐P~ABCD中,底面ABCD為矩形,E,F(xiàn)分別為AD,PB的中點,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求證:EF∥平面PCD;(2)設G為AB中點,求證:平面EFG⊥平面PCD.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
作出兩異面直線所成的角,然后由余弦定理求解.【詳解】在正四棱柱中,則異面直線與所成角為或其補角,在中,,,.故選A.【點睛】本題考查異面直線所成的角,解題關鍵是根據(jù)定義作出異面直線所成的角,然后通過解三角形求之.2、D【解析】
畫出圖象及直線,借助圖象分析.【詳解】如圖,當直線位于點及其上方且位于點及其下方,或者直線與曲線相切在第一象限時符合要求.即,即,或者,得,,即,得,所以的取值范圍是.故選D.【點睛】根據(jù)方程實根個數(shù)確定參數(shù)范圍,常把其轉化為曲線交點個數(shù),特別是其中一條為直線時常用此法.3、C【解析】
先求出在編號為1,2,3,4的小球中任取2只小球的不同取法,再求出取出的2只球編號之和是偶數(shù)的不同取法,然后求概率即可得解.【詳解】解:在編號為1,2,3,4的小球中任取2只小球,則有共6種取法,則取出的2只球編號之和是偶數(shù)的有共2種取法,即取出的2只球編號之和是偶數(shù)的概率為,故選:C.【點睛】本題考查了古典型概率公式,屬基礎題.4、B【解析】
令g(x)=0得f(x)=a,再利用函數(shù)的圖像分析解答得到a的取值范圍.【詳解】令g(x)=0得f(x)=a,函數(shù)f(x)的圖像如圖所示,當直線y=a在x軸和直線x=1之間時,函數(shù)y=f(x)的圖像與直線y=a有四個零點,所以0<a<1.故選:B【點睛】本題主要考查函數(shù)的圖像和性質,考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平,屬于中檔題.5、D【解析】
設點,根據(jù)條件知點均在單位圓上,由向量數(shù)量積或斜率知識,可發(fā)現(xiàn),對目標式子進行變形,發(fā)現(xiàn)其幾何意義為兩點到直線的距離之和有關.【詳解】設,,均在圓上,且,設的中點為,則點到原點的距離為,點在圓上,設到直線的距離分別為,,,.【點睛】利用數(shù)形結合思想,發(fā)現(xiàn)代數(shù)式的幾何意義,即構造系數(shù),才能看出目標式子的幾何意義為兩點到直線距離之和的倍.6、C【解析】
根據(jù)已知不等式可得,;根據(jù)各象限內三角函數(shù)的符號可確定角所處的象限.【詳解】由知:,在第三象限故選:【點睛】本題考查三角函數(shù)在各象限內的符號,屬于基礎題.7、B【解析】
由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】由題意可得.故選:B.【點睛】本題主要考查平面向量的數(shù)量積公式,屬基礎題.8、B【解析】
利用三角函數(shù)的誘導公式,得到,即可求解.【詳解】由題意,可得,故選B.【點睛】本題主要考查了三角函數(shù)的誘導公式的化簡、求值,其中解答中熟練應用三角函數(shù)的誘導公式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、B【解析】
根據(jù)正弦定理,代入數(shù)據(jù)即可。【詳解】由正弦定理,得:,即,即:解得:選B?!军c睛】此題考查正弦定理:,代入數(shù)據(jù)即可,屬于基礎題目。10、B【解析】
根據(jù)終邊相同角的概念,即可判斷出結果.【詳解】因為,所以與是終邊相同的角.故選B【點睛】本題主要考查終邊相同的角,熟記有關概念即可,屬于基礎題型.二、填空題:本大題共6小題,每小題5分,共30分。11、或1【解析】
由點到直線的距離公式進行解答,即可求出實數(shù)a的值.【詳解】點(1,a)到直線x﹣y+1=0的距離是,∴;即|a﹣2|=3,解得a=﹣1,或a=1,∴實數(shù)a的值為﹣1或1.故答案為:﹣1或1.【點睛】本題考查了點到直線的距離公式的應用問題,解題時應熟記點到直線的距離公式,是基礎題.12、【解析】
本題首先可以根據(jù)向量的運算得出,然后等式兩邊同時平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【詳解】設向量與向量的夾角為,因為,所以,即,因為,所以,即,所以的取值范圍是.【點睛】本題考查向量的運算以及向量的數(shù)量積的相關性質,向量的數(shù)量積公式,考查計算能力,是簡單題.13、【解析】
利用輔助角將函數(shù)利用兩角差的正弦公式進行化簡,求得函數(shù)取得最大值時的與的關系,從而求得,,可得結果.【詳解】因為函數(shù),其中,,當時,函數(shù)取得最大值,此時,∴,,∴故答案為【點睛】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應用與正弦函數(shù)的性質,屬于中檔題.14、【解析】
由拋物線的對稱性知A、B關于x軸對稱,設出它們的坐標,利用三角形的垂心的性質,結合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標,問題得以解決.【詳解】∵拋物線關于x軸對稱,內接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點睛】本題考查拋物線的簡單性質,考查了兩直線垂直與斜率的關系,是中檔題15、4【解析】
先根據(jù),,成等差數(shù)列得到,再根據(jù)余弦定理得到滿足的等式關系,而由面積可得,利用基本不等式可求的最小值.【詳解】因為,,成等差數(shù)列,,故.由余弦定理可得.由基本不等式可以得到,當且僅當時等號成立.因為,所以,所以即,當且僅當時等號成立.故填4.【點睛】三角形中與邊有關的最值問題,可根據(jù)題設條件找到各邊的等式關系或角的等量關系,再根據(jù)邊的關系式的結構特征選用合適的基本不等式求最值,也可以利用正弦定理把與邊有關的目標代數(shù)式轉化為與角有關的三角函數(shù)式后再求其最值.16、【解析】
利用,求得關于的遞推關系式,利用配湊法證得是等比數(shù)列,由此求得數(shù)列的通項公式,進而求得的表達式,從而求得的值.【詳解】當時,.由于,而,故,故答案為:.【點睛】本小題主要考查配湊法求數(shù)列的通項公式,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求出A組學生的平均分可得B組學生的平均分,設被污損的分數(shù)為X,列方程得X,從而得到B組學生的分數(shù),其中有3人分數(shù)超過86分,由此能求出B組學生中隨機挑選1人,其得分超過86分概率.(2)利用列舉法寫出在A、B兩組學生中隨機抽取1名同學,其分數(shù)組成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.【詳解】(1)A組學生的平均分為,所以B組學生的平均分為86分設被污損的分數(shù)為,則,解得所以B組學生的分數(shù)為91、93、83、88、75,其中有3人分數(shù)超過86分在B組學生中隨機挑選1人,其得分超過86分概率為.(2)A組學生的分數(shù)分別是94、80、86、88、77,B組學生的分數(shù)為91、93、83、88、75,在A、B兩組學生中隨機抽取1名同學,其分數(shù)組成的基本事件(m,n),有(94,91),(94,93),(94,83),(94,88),(94,75),(80,91),(80,93),(80,83),(80,88),(80,75),(86,91),(86,93),(86,83),(86,88),(86,75),(88,91),(88,93),(88,83),(88,88),(88,75),(77,91),(77,93),(77,83),(77,88),(77,75),共25個隨機各抽取1名同學的分數(shù)滿足的基本事件有(94,83),(94,75),(80,91),(80,93),(80,88),(86,75),(88,75),(77,91),(77,93),(77,88),共10個∴的概率為.【點睛】本題考查概率的求法,考查古典概型、列舉法、莖葉圖等基礎知識,考查了推理能力與計算能力,是基礎題.18、(1);(2)證明見解析;(3).【解析】
(1)根據(jù)不等式可得,把代入即可解出(2)根據(jù)化簡,利用為有理數(shù)即可解決(3)根據(jù)題意可知,本題需分為奇數(shù)和偶數(shù)時討論,通過求出.【詳解】(1)∵,∴,即,∴,∵,∴,∴.(2)∵,∴,∴,∵,,為有理數(shù)列,為無理數(shù)列,∴,∴,以上每一步可逆.(3),∴.∵,∴,當時,∴當時,∴,∴為有理數(shù)列,∵,∴,∴,∵,,為有理數(shù)列,為無理數(shù)列,∴,∴,∴當時,∴當時,∴,∴.【點睛】本題數(shù)列的分類問題,數(shù)列通項式的求法、有關數(shù)列的綜合問題等.本題難度、計算量較大,屬于難題.19、(1),的單調遞減區(qū)間是;(2).【解析】試題分析:(1)用坐標表示向量條件,代入函數(shù)解析式中,運用向量的坐標運算法則求出函數(shù)解析式并應用二倍角公式以及兩角和的正弦公式化簡函數(shù)解析式,由三角函數(shù)的性質可求函數(shù)的最小正周期及單調遞減區(qū)間;(2)將條件代入函數(shù)解析式可求出角,由三角形面積公式求出邊,再由余弦定理求出邊,再由正弦定理可求外接圓半徑.試題解析:(1)由題意得:.所以,函數(shù)的最小正周期為,由得函數(shù)的單調遞減區(qū)間是(2),解得,又的面積為.得.再由余弦定理,解得,即△為直角三角形.考點:1.向量坐標運算;2.三角函數(shù)圖象與性質;3.正弦定理與余弦定理.20、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解析】
(1)利用基本元的思想,結合等差數(shù)列、等比數(shù)列的通項公式、等比中項的性質列方程,解方程求得的值,從而求得數(shù)列的通項公式.(2)利用錯位相減求和法求得數(shù)列的前項和.【詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能電網(wǎng)建設合作協(xié)議合同書范本
- 2025年度跨境電商進口商品質量檢測標準合同書
- 2025年度文化創(chuàng)意產(chǎn)業(yè)合作投資合同
- 2025年度城市綠化與景觀提升合同范本
- 2025年度工業(yè)自動化設備租賃服務合同
- 2025年度智慧教育平臺開發(fā)與應用簡易勞動合同
- 2025年度人工智能企業(yè)兼職算法工程師聘用合同
- 2025年度文化創(chuàng)意產(chǎn)業(yè)投資合同中的知識產(chǎn)權保證條款
- 2025年度海洋石油平臺主體施工承包合同范本
- 2025年度攪拌車混凝土運輸信息化管理合同范本
- 牙髓炎中牙髓干細胞與神經(jīng)支配的相互作用
- 勞務雇傭協(xié)議書范本
- 【2022屆高考英語讀后續(xù)寫】主題升華積累講義及高級句型積累
- JGJ52-2006 普通混凝土用砂、石質量及檢驗方法標準
- 環(huán)境監(jiān)測的基本知識
- 電動車棚施工方案
- 《中國十大書法家》課件
- 超實用可編輯版中國地圖全圖及分省地圖
- 西方法律思想史ppt
- 交換機工作原理詳解(附原理圖)
- 小學總復習非連續(xù)性文本教學課件
評論
0/150
提交評論